diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/libxineadec/Makefile.am | 8 | ||||
-rw-r--r-- | src/libxineadec/gsm610.c | 4 | ||||
-rw-r--r-- | src/libxineadec/gsm610/Makefile.am | 26 | ||||
-rw-r--r-- | src/libxineadec/gsm610/add.c | 235 | ||||
-rw-r--r-- | src/libxineadec/gsm610/decode.c | 63 | ||||
-rw-r--r-- | src/libxineadec/gsm610/gsm.h | 71 | ||||
-rw-r--r-- | src/libxineadec/gsm610/gsm_config.h | 37 | ||||
-rw-r--r-- | src/libxineadec/gsm610/gsm_create.c | 45 | ||||
-rw-r--r-- | src/libxineadec/gsm610/gsm_decode.c | 359 | ||||
-rw-r--r-- | src/libxineadec/gsm610/gsm_destroy.c | 26 | ||||
-rw-r--r-- | src/libxineadec/gsm610/long_term.c | 960 | ||||
-rw-r--r-- | src/libxineadec/gsm610/lpc.c | 350 | ||||
-rw-r--r-- | src/libxineadec/gsm610/private.h | 268 | ||||
-rw-r--r-- | src/libxineadec/gsm610/proto.h | 65 | ||||
-rw-r--r-- | src/libxineadec/gsm610/rpe.c | 489 | ||||
-rw-r--r-- | src/libxineadec/gsm610/short_term.c | 428 | ||||
-rw-r--r-- | src/libxineadec/gsm610/table.c | 63 | ||||
-rw-r--r-- | src/libxineadec/gsm610/unproto.h | 23 |
18 files changed, 7 insertions, 3513 deletions
diff --git a/src/libxineadec/Makefile.am b/src/libxineadec/Makefile.am index 3bc08f320..25d1e358a 100644 --- a/src/libxineadec/Makefile.am +++ b/src/libxineadec/Makefile.am @@ -3,8 +3,6 @@ include $(top_srcdir)/misc/Makefile.common AM_CFLAGS = $(DEFAULT_OCFLAGS) $(VISIBILITY_FLAG) AM_LDFLAGS = $(xineplug_ldflags) -SUBDIRS = gsm610 - EXTRA_DIST = fooaudio.c if ENABLE_VORBIS @@ -29,6 +27,9 @@ $(top_builddir)/contrib/libmpcdec/libmpcdec.la: $(top_builddir)/contrib/libdca/libdca.la: $(MAKE) -C $(top_builddir)/contrib/libdca +$(top_builddir)/contrib/gsm610/libgsm610.la: + $(MAKE) -C $(top_builddir)/contrib/gsm610 + xineplug_LTLIBRARIES = \ xineplug_decode_gsm610.la \ xineplug_decode_lpcm.la \ @@ -38,7 +39,8 @@ xineplug_LTLIBRARIES = \ $(dts_module) xineplug_decode_gsm610_la_SOURCES = gsm610.c -xineplug_decode_gsm610_la_LIBADD = $(XINE_LIB) gsm610/libgsm610.la +xineplug_decode_gsm610_la_LIBADD = $(XINE_LIB) $(top_builddir)/contrib/gsm610/libgsm610.la +xineplug_decode_gsm610_la_CPPFLAGS = -I$(top_srcdir)/contrib/gsm610 xineplug_decode_lpcm_la_SOURCES = xine_lpcm_decoder.c xineplug_decode_lpcm_la_LIBADD = $(XINE_LIB) diff --git a/src/libxineadec/gsm610.c b/src/libxineadec/gsm610.c index 9c96145e3..e144c5bbf 100644 --- a/src/libxineadec/gsm610.c +++ b/src/libxineadec/gsm610.c @@ -61,8 +61,8 @@ #include "xineutils.h" #include "bswap.h" -#include "gsm610/private.h" -#include "gsm610/gsm.h" +#include "private.h" +#include "gsm.h" #define AUDIOBUFSIZE 128*1024 diff --git a/src/libxineadec/gsm610/Makefile.am b/src/libxineadec/gsm610/Makefile.am deleted file mode 100644 index f2011dfd4..000000000 --- a/src/libxineadec/gsm610/Makefile.am +++ /dev/null @@ -1,26 +0,0 @@ -include $(top_srcdir)/misc/Makefile.common - -AM_CFLAGS = $(DEFAULT_OCFLAGS) $(VISIBILITY_FLAG) -AM_LDFLAGS = $(xineplug_ldflags) - -noinst_LTLIBRARIES = libgsm610.la - -libgsm610_la_SOURCES = \ - add.c \ - decode.c \ - gsm_create.c \ - gsm_decode.c \ - gsm_destroy.c \ - long_term.c \ - lpc.c \ - rpe.c \ - short_term.c \ - table.c - - -noinst_HEADERS = \ - gsm_config.h \ - gsm.h \ - private.h \ - proto.h \ - unproto.h diff --git a/src/libxineadec/gsm610/add.c b/src/libxineadec/gsm610/add.c deleted file mode 100644 index cd4b5dd3b..000000000 --- a/src/libxineadec/gsm610/add.c +++ /dev/null @@ -1,235 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/add.c,v 1.1 2002/10/12 19:12:49 tmmm Exp $ */ - -/* - * See private.h for the more commonly used macro versions. - */ - -#include <stdio.h> -#include <assert.h> - -#include "private.h" -#include "gsm.h" -#include "proto.h" - -#define saturate(x) \ - ((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x)) - -word gsm_add P2((a,b), word a, word b) -{ - longword sum = (longword)a + (longword)b; - return saturate(sum); -} - -word gsm_sub P2((a,b), word a, word b) -{ - longword diff = (longword)a - (longword)b; - return saturate(diff); -} - -word gsm_mult P2((a,b), word a, word b) -{ - if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD; - else return SASR( (longword)a * (longword)b, 15 ); -} - -word gsm_mult_r P2((a,b), word a, word b) -{ - if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD; - else { - longword prod = (longword)a * (longword)b + 16384; - prod >>= 15; - return prod & 0xFFFF; - } -} - -word gsm_abs P1((a), word a) -{ - return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a; -} - -longword gsm_L_mult P2((a,b),word a, word b) -{ - assert( a != MIN_WORD || b != MIN_WORD ); - return ((longword)a * (longword)b) << 1; -} - -longword gsm_L_add P2((a,b), longword a, longword b) -{ - if (a < 0) { - if (b >= 0) return a + b; - else { - ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1); - return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2; - } - } - else if (b <= 0) return a + b; - else { - ulongword A = (ulongword)a + (ulongword)b; - return A > MAX_LONGWORD ? MAX_LONGWORD : A; - } -} - -longword gsm_L_sub P2((a,b), longword a, longword b) -{ - if (a >= 0) { - if (b >= 0) return a - b; - else { - /* a>=0, b<0 */ - - ulongword A = (ulongword)a + -(b + 1); - return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1); - } - } - else if (b <= 0) return a - b; - else { - /* a<0, b>0 */ - - ulongword A = (ulongword)-(a + 1) + b; - return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1; - } -} - -static unsigned char const bitoff[ 256 ] = { - 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, - 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -}; - -word gsm_norm P1((a), longword a ) -/* - * the number of left shifts needed to normalize the 32 bit - * variable L_var1 for positive values on the interval - * - * with minimum of - * minimum of 1073741824 (01000000000000000000000000000000) and - * maximum of 2147483647 (01111111111111111111111111111111) - * - * - * and for negative values on the interval with - * minimum of -2147483648 (-10000000000000000000000000000000) and - * maximum of -1073741824 ( -1000000000000000000000000000000). - * - * in order to normalize the result, the following - * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 ); - * - * (That's 'ffs', only from the left, not the right..) - */ -{ - assert(a != 0); - - if (a < 0) { - if (a <= -1073741824) return 0; - a = ~a; - } - - return a & 0xffff0000 - ? ( a & 0xff000000 - ? -1 + bitoff[ 0xFF & (a >> 24) ] - : 7 + bitoff[ 0xFF & (a >> 16) ] ) - : ( a & 0xff00 - ? 15 + bitoff[ 0xFF & (a >> 8) ] - : 23 + bitoff[ 0xFF & a ] ); -} - -longword gsm_L_asl P2((a,n), longword a, int n) -{ - if (n >= 32) return 0; - if (n <= -32) return -(a < 0); - if (n < 0) return gsm_L_asr(a, -n); - return a << n; -} - -word gsm_asl P2((a,n), word a, int n) -{ - if (n >= 16) return 0; - if (n <= -16) return -(a < 0); - if (n < 0) return gsm_asr(a, -n); - return a << n; -} - -longword gsm_L_asr P2((a,n), longword a, int n) -{ - if (n >= 32) return -(a < 0); - if (n <= -32) return 0; - if (n < 0) return a << -n; - -# ifdef SASR - return a >> n; -# else - if (a >= 0) return a >> n; - else return -(longword)( -(ulongword)a >> n ); -# endif -} - -word gsm_asr P2((a,n), word a, int n) -{ - if (n >= 16) return -(a < 0); - if (n <= -16) return 0; - if (n < 0) return a << -n; - -# ifdef SASR - return a >> n; -# else - if (a >= 0) return a >> n; - else return -(word)( -(uword)a >> n ); -# endif -} - -/* - * (From p. 46, end of section 4.2.5) - * - * NOTE: The following lines gives [sic] one correct implementation - * of the div(num, denum) arithmetic operation. Compute div - * which is the integer division of num by denum: with denum - * >= num > 0 - */ - -word gsm_div P2((num,denum), word num, word denum) -{ - longword L_num = num; - longword L_denum = denum; - word div = 0; - int k = 15; - - /* The parameter num sometimes becomes zero. - * Although this is explicitly guarded against in 4.2.5, - * we assume that the result should then be zero as well. - */ - - /* assert(num != 0); */ - - assert(num >= 0 && denum >= num); - if (num == 0) - return 0; - - while (k--) { - div <<= 1; - L_num <<= 1; - - if (L_num >= L_denum) { - L_num -= L_denum; - div++; - } - } - - return div; -} diff --git a/src/libxineadec/gsm610/decode.c b/src/libxineadec/gsm610/decode.c deleted file mode 100644 index 66dcab665..000000000 --- a/src/libxineadec/gsm610/decode.c +++ /dev/null @@ -1,63 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/decode.c,v 1.1 2002/10/12 19:12:49 tmmm Exp $ */ - -#include <stdio.h> - -#include "private.h" -#include "gsm.h" -#include "proto.h" - -/* - * 4.3 FIXED POINT IMPLEMENTATION OF THE RPE-LTP DECODER - */ - -static void Postprocessing P2((S,s), - struct gsm_state * S, - register word * s) -{ - register int k; - register word msr = S->msr; - register longword ltmp; /* for GSM_ADD */ - register word tmp; - - for (k = 160; k--; s++) { - tmp = GSM_MULT_R( msr, 28180 ); - msr = GSM_ADD(*s, tmp); /* Deemphasis */ - *s = GSM_ADD(msr, msr) & 0xFFF8; /* Truncation & Upscaling */ - } - S->msr = msr; -} - -void Gsm_Decoder P8((S,LARcr, Ncr,bcr,Mcr,xmaxcr,xMcr,s), - struct gsm_state * S, - - word * LARcr, /* [0..7] IN */ - - word * Ncr, /* [0..3] IN */ - word * bcr, /* [0..3] IN */ - word * Mcr, /* [0..3] IN */ - word * xmaxcr, /* [0..3] IN */ - word * xMcr, /* [0..13*4] IN */ - - word * s) /* [0..159] OUT */ -{ - int j, k; - word erp[40], wt[160]; - word * drp = S->dp0 + 120; - - for (j=0; j <= 3; j++, xmaxcr++, bcr++, Ncr++, Mcr++, xMcr += 13) { - - Gsm_RPE_Decoding( S, *xmaxcr, *Mcr, xMcr, erp ); - Gsm_Long_Term_Synthesis_Filtering( S, *Ncr, *bcr, erp, drp ); - - for (k = 0; k <= 39; k++) wt[ j * 40 + k ] = drp[ k ]; - } - - Gsm_Short_Term_Synthesis_Filter( S, LARcr, wt, s ); - Postprocessing(S, s); -} diff --git a/src/libxineadec/gsm610/gsm.h b/src/libxineadec/gsm610/gsm.h deleted file mode 100644 index 34ad8f7a5..000000000 --- a/src/libxineadec/gsm610/gsm.h +++ /dev/null @@ -1,71 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/*$Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/gsm.h,v 1.1 2002/10/12 19:12:49 tmmm Exp $*/ - -#ifndef GSM_H -#define GSM_H - -#ifdef __cplusplus -# define NeedFunctionPrototypes 1 -#endif - -#if __STDC__ -# define NeedFunctionPrototypes 1 -#endif - -#ifdef _NO_PROTO -# undef NeedFunctionPrototypes -#endif - -#ifdef NeedFunctionPrototypes -# include <stdio.h> /* for FILE * */ -#endif - -#undef GSM_P -#if NeedFunctionPrototypes -# define GSM_P( protos ) protos -#else -# define GSM_P( protos ) ( /* protos */ ) -#endif - -/* - * Interface - */ - -typedef struct gsm_state * gsm; -typedef short gsm_signal; /* signed 16 bit */ -typedef unsigned char gsm_byte; -typedef gsm_byte gsm_frame[33]; /* 33 * 8 bits */ - -#define GSM_MAGIC 0xD /* 13 kbit/s RPE-LTP */ - -#define GSM_PATCHLEVEL 10 -#define GSM_MINOR 0 -#define GSM_MAJOR 1 - -#define GSM_OPT_VERBOSE 1 -#define GSM_OPT_FAST 2 -#define GSM_OPT_LTP_CUT 3 -#define GSM_OPT_WAV49 4 -#define GSM_OPT_FRAME_INDEX 5 -#define GSM_OPT_FRAME_CHAIN 6 - -extern gsm gsm_create GSM_P((void)); -extern void gsm_destroy GSM_P((gsm)); - -extern int gsm_print GSM_P((FILE *, gsm, gsm_byte *)); -extern int gsm_option GSM_P((gsm, int, int *)); - -extern void gsm_encode GSM_P((gsm, gsm_signal *, gsm_byte *)); -extern int gsm_decode GSM_P((gsm, gsm_byte *, gsm_signal *)); - -extern int gsm_explode GSM_P((gsm, gsm_byte *, gsm_signal *)); -extern void gsm_implode GSM_P((gsm, gsm_signal *, gsm_byte *)); - -#undef GSM_P - -#endif /* GSM_H */ diff --git a/src/libxineadec/gsm610/gsm_config.h b/src/libxineadec/gsm610/gsm_config.h deleted file mode 100644 index a40004221..000000000 --- a/src/libxineadec/gsm610/gsm_config.h +++ /dev/null @@ -1,37 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/*$Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/gsm_config.h,v 1.2 2004/05/12 16:21:41 mroi Exp $*/ - -#ifndef CONFIG_H -#define CONFIG_H - -/*efine SIGHANDLER_T int / * signal handlers are void */ -/*efine HAS_SYSV_SIGNAL 1 / * sigs not blocked/reset? */ - -#define HAS_STDLIB_H 1 /* /usr/include/stdlib.h */ -/*efine HAS_LIMITS_H 1 / * /usr/include/limits.h */ -#define HAS_FCNTL_H 1 /* /usr/include/fcntl.h */ -/*efine HAS_ERRNO_DECL 1 / * errno.h declares errno */ - -#define HAS_FSTAT 1 /* fstat syscall */ -#define HAS_FCHMOD 1 /* fchmod syscall */ -#define HAS_CHMOD 1 /* chmod syscall */ -#define HAS_FCHOWN 1 /* fchown syscall */ -#define HAS_CHOWN 1 /* chown syscall */ -/*efine HAS__FSETMODE 1 / * _fsetmode -- set file mode */ - -#define HAS_STRING_H 1 /* /usr/include/string.h */ -/*efine HAS_STRINGS_H 1 / * /usr/include/strings.h */ - -#define HAS_UNISTD_H 1 /* /usr/include/unistd.h */ -#define HAS_UTIME 1 /* POSIX utime(path, times) */ -/*efine HAS_UTIMES 1 / * use utimes() syscall instead */ -#define HAS_UTIME_H 1 /* UTIME header file */ -/*efine HAS_UTIMBUF 1 / * struct utimbuf */ -/*efine HAS_UTIMEUSEC 1 / * microseconds in utimbuf? */ - -#endif /* CONFIG_H */ diff --git a/src/libxineadec/gsm610/gsm_create.c b/src/libxineadec/gsm610/gsm_create.c deleted file mode 100644 index df80758f0..000000000 --- a/src/libxineadec/gsm610/gsm_create.c +++ /dev/null @@ -1,45 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -static char const ident[] = "$Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/gsm_create.c,v 1.1 2002/10/12 19:12:49 tmmm Exp $"; - -#include "gsm_config.h" - -#ifdef HAS_STRING_H -#include <string.h> -#else -# include "proto.h" - extern char * memset P((char *, int, int)); -#endif - -#ifdef HAS_STDLIB_H -# include <stdlib.h> -#else -# ifdef HAS_MALLOC_H -# include <malloc.h> -# else - extern char * malloc(); -# endif -#endif - -#include <stdio.h> - -#include "gsm.h" -#include "private.h" -#include "proto.h" - -gsm gsm_create P0() -{ - gsm r; - - r = (gsm)malloc(sizeof(struct gsm_state)); - if (!r) return r; - - memset((char *)r, 0, sizeof(*r)); - r->nrp = 40; - - return r; -} diff --git a/src/libxineadec/gsm610/gsm_decode.c b/src/libxineadec/gsm610/gsm_decode.c deleted file mode 100644 index 849818c14..000000000 --- a/src/libxineadec/gsm610/gsm_decode.c +++ /dev/null @@ -1,359 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/gsm_decode.c,v 1.1 2002/10/12 19:12:49 tmmm Exp $ */ - -#include "private.h" - -#include "gsm.h" -#include "proto.h" - -int gsm_decode P3((s, c, target), gsm s, gsm_byte * c, gsm_signal * target) -{ - word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4]; - - if (s->wav_fmt) { - - uword sr = 0; - - s->frame_index = !s->frame_index; - if (s->frame_index) { - - sr = *c++; - LARc[0] = sr & 0x3f; sr >>= 6; - sr |= (uword)*c++ << 2; - LARc[1] = sr & 0x3f; sr >>= 6; - sr |= (uword)*c++ << 4; - LARc[2] = sr & 0x1f; sr >>= 5; - LARc[3] = sr & 0x1f; sr >>= 5; - sr |= (uword)*c++ << 2; - LARc[4] = sr & 0xf; sr >>= 4; - LARc[5] = sr & 0xf; sr >>= 4; - sr |= (uword)*c++ << 2; /* 5 */ - LARc[6] = sr & 0x7; sr >>= 3; - LARc[7] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 4; - Nc[0] = sr & 0x7f; sr >>= 7; - bc[0] = sr & 0x3; sr >>= 2; - Mc[0] = sr & 0x3; sr >>= 2; - sr |= (uword)*c++ << 1; - xmaxc[0] = sr & 0x3f; sr >>= 6; - xmc[0] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[1] = sr & 0x7; sr >>= 3; - xmc[2] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[3] = sr & 0x7; sr >>= 3; - xmc[4] = sr & 0x7; sr >>= 3; - xmc[5] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; /* 10 */ - xmc[6] = sr & 0x7; sr >>= 3; - xmc[7] = sr & 0x7; sr >>= 3; - xmc[8] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[9] = sr & 0x7; sr >>= 3; - xmc[10] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[11] = sr & 0x7; sr >>= 3; - xmc[12] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 4; - Nc[1] = sr & 0x7f; sr >>= 7; - bc[1] = sr & 0x3; sr >>= 2; - Mc[1] = sr & 0x3; sr >>= 2; - sr |= (uword)*c++ << 1; - xmaxc[1] = sr & 0x3f; sr >>= 6; - xmc[13] = sr & 0x7; sr >>= 3; - sr = *c++; /* 15 */ - xmc[14] = sr & 0x7; sr >>= 3; - xmc[15] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[16] = sr & 0x7; sr >>= 3; - xmc[17] = sr & 0x7; sr >>= 3; - xmc[18] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[19] = sr & 0x7; sr >>= 3; - xmc[20] = sr & 0x7; sr >>= 3; - xmc[21] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[22] = sr & 0x7; sr >>= 3; - xmc[23] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[24] = sr & 0x7; sr >>= 3; - xmc[25] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 4; /* 20 */ - Nc[2] = sr & 0x7f; sr >>= 7; - bc[2] = sr & 0x3; sr >>= 2; - Mc[2] = sr & 0x3; sr >>= 2; - sr |= (uword)*c++ << 1; - xmaxc[2] = sr & 0x3f; sr >>= 6; - xmc[26] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[27] = sr & 0x7; sr >>= 3; - xmc[28] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[29] = sr & 0x7; sr >>= 3; - xmc[30] = sr & 0x7; sr >>= 3; - xmc[31] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[32] = sr & 0x7; sr >>= 3; - xmc[33] = sr & 0x7; sr >>= 3; - xmc[34] = sr & 0x7; sr >>= 3; - sr = *c++; /* 25 */ - xmc[35] = sr & 0x7; sr >>= 3; - xmc[36] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[37] = sr & 0x7; sr >>= 3; - xmc[38] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 4; - Nc[3] = sr & 0x7f; sr >>= 7; - bc[3] = sr & 0x3; sr >>= 2; - Mc[3] = sr & 0x3; sr >>= 2; - sr |= (uword)*c++ << 1; - xmaxc[3] = sr & 0x3f; sr >>= 6; - xmc[39] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[40] = sr & 0x7; sr >>= 3; - xmc[41] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; /* 30 */ - xmc[42] = sr & 0x7; sr >>= 3; - xmc[43] = sr & 0x7; sr >>= 3; - xmc[44] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[45] = sr & 0x7; sr >>= 3; - xmc[46] = sr & 0x7; sr >>= 3; - xmc[47] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[48] = sr & 0x7; sr >>= 3; - xmc[49] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[50] = sr & 0x7; sr >>= 3; - xmc[51] = sr & 0x7; sr >>= 3; - - s->frame_chain = sr & 0xf; - } - else { - sr = s->frame_chain; - sr |= (uword)*c++ << 4; /* 1 */ - LARc[0] = sr & 0x3f; sr >>= 6; - LARc[1] = sr & 0x3f; sr >>= 6; - sr = *c++; - LARc[2] = sr & 0x1f; sr >>= 5; - sr |= (uword)*c++ << 3; - LARc[3] = sr & 0x1f; sr >>= 5; - LARc[4] = sr & 0xf; sr >>= 4; - sr |= (uword)*c++ << 2; - LARc[5] = sr & 0xf; sr >>= 4; - LARc[6] = sr & 0x7; sr >>= 3; - LARc[7] = sr & 0x7; sr >>= 3; - sr = *c++; /* 5 */ - Nc[0] = sr & 0x7f; sr >>= 7; - sr |= (uword)*c++ << 1; - bc[0] = sr & 0x3; sr >>= 2; - Mc[0] = sr & 0x3; sr >>= 2; - sr |= (uword)*c++ << 5; - xmaxc[0] = sr & 0x3f; sr >>= 6; - xmc[0] = sr & 0x7; sr >>= 3; - xmc[1] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[2] = sr & 0x7; sr >>= 3; - xmc[3] = sr & 0x7; sr >>= 3; - xmc[4] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[5] = sr & 0x7; sr >>= 3; - xmc[6] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; /* 10 */ - xmc[7] = sr & 0x7; sr >>= 3; - xmc[8] = sr & 0x7; sr >>= 3; - xmc[9] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[10] = sr & 0x7; sr >>= 3; - xmc[11] = sr & 0x7; sr >>= 3; - xmc[12] = sr & 0x7; sr >>= 3; - sr = *c++; - Nc[1] = sr & 0x7f; sr >>= 7; - sr |= (uword)*c++ << 1; - bc[1] = sr & 0x3; sr >>= 2; - Mc[1] = sr & 0x3; sr >>= 2; - sr |= (uword)*c++ << 5; - xmaxc[1] = sr & 0x3f; sr >>= 6; - xmc[13] = sr & 0x7; sr >>= 3; - xmc[14] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; /* 15 */ - xmc[15] = sr & 0x7; sr >>= 3; - xmc[16] = sr & 0x7; sr >>= 3; - xmc[17] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[18] = sr & 0x7; sr >>= 3; - xmc[19] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[20] = sr & 0x7; sr >>= 3; - xmc[21] = sr & 0x7; sr >>= 3; - xmc[22] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[23] = sr & 0x7; sr >>= 3; - xmc[24] = sr & 0x7; sr >>= 3; - xmc[25] = sr & 0x7; sr >>= 3; - sr = *c++; - Nc[2] = sr & 0x7f; sr >>= 7; - sr |= (uword)*c++ << 1; /* 20 */ - bc[2] = sr & 0x3; sr >>= 2; - Mc[2] = sr & 0x3; sr >>= 2; - sr |= (uword)*c++ << 5; - xmaxc[2] = sr & 0x3f; sr >>= 6; - xmc[26] = sr & 0x7; sr >>= 3; - xmc[27] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[28] = sr & 0x7; sr >>= 3; - xmc[29] = sr & 0x7; sr >>= 3; - xmc[30] = sr & 0x7; sr >>= 3; - sr = *c++; - xmc[31] = sr & 0x7; sr >>= 3; - xmc[32] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[33] = sr & 0x7; sr >>= 3; - xmc[34] = sr & 0x7; sr >>= 3; - xmc[35] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; /* 25 */ - xmc[36] = sr & 0x7; sr >>= 3; - xmc[37] = sr & 0x7; sr >>= 3; - xmc[38] = sr & 0x7; sr >>= 3; - sr = *c++; - Nc[3] = sr & 0x7f; sr >>= 7; - sr |= (uword)*c++ << 1; - bc[3] = sr & 0x3; sr >>= 2; - Mc[3] = sr & 0x3; sr >>= 2; - sr |= (uword)*c++ << 5; - xmaxc[3] = sr & 0x3f; sr >>= 6; - xmc[39] = sr & 0x7; sr >>= 3; - xmc[40] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[41] = sr & 0x7; sr >>= 3; - xmc[42] = sr & 0x7; sr >>= 3; - xmc[43] = sr & 0x7; sr >>= 3; - sr = *c++; /* 30 */ - xmc[44] = sr & 0x7; sr >>= 3; - xmc[45] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 2; - xmc[46] = sr & 0x7; sr >>= 3; - xmc[47] = sr & 0x7; sr >>= 3; - xmc[48] = sr & 0x7; sr >>= 3; - sr |= (uword)*c++ << 1; - xmc[49] = sr & 0x7; sr >>= 3; - xmc[50] = sr & 0x7; sr >>= 3; - xmc[51] = sr & 0x7; sr >>= 3; - } - } - else - { - /* GSM_MAGIC = (*c >> 4) & 0xF; */ - - if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1; - - LARc[0] = (*c++ & 0xF) << 2; /* 1 */ - LARc[0] |= (*c >> 6) & 0x3; - LARc[1] = *c++ & 0x3F; - LARc[2] = (*c >> 3) & 0x1F; - LARc[3] = (*c++ & 0x7) << 2; - LARc[3] |= (*c >> 6) & 0x3; - LARc[4] = (*c >> 2) & 0xF; - LARc[5] = (*c++ & 0x3) << 2; - LARc[5] |= (*c >> 6) & 0x3; - LARc[6] = (*c >> 3) & 0x7; - LARc[7] = *c++ & 0x7; - Nc[0] = (*c >> 1) & 0x7F; - bc[0] = (*c++ & 0x1) << 1; - bc[0] |= (*c >> 7) & 0x1; - Mc[0] = (*c >> 5) & 0x3; - xmaxc[0] = (*c++ & 0x1F) << 1; - xmaxc[0] |= (*c >> 7) & 0x1; - xmc[0] = (*c >> 4) & 0x7; - xmc[1] = (*c >> 1) & 0x7; - xmc[2] = (*c++ & 0x1) << 2; - xmc[2] |= (*c >> 6) & 0x3; - xmc[3] = (*c >> 3) & 0x7; - xmc[4] = *c++ & 0x7; - xmc[5] = (*c >> 5) & 0x7; - xmc[6] = (*c >> 2) & 0x7; - xmc[7] = (*c++ & 0x3) << 1; /* 10 */ - xmc[7] |= (*c >> 7) & 0x1; - xmc[8] = (*c >> 4) & 0x7; - xmc[9] = (*c >> 1) & 0x7; - xmc[10] = (*c++ & 0x1) << 2; - xmc[10] |= (*c >> 6) & 0x3; - xmc[11] = (*c >> 3) & 0x7; - xmc[12] = *c++ & 0x7; - Nc[1] = (*c >> 1) & 0x7F; - bc[1] = (*c++ & 0x1) << 1; - bc[1] |= (*c >> 7) & 0x1; - Mc[1] = (*c >> 5) & 0x3; - xmaxc[1] = (*c++ & 0x1F) << 1; - xmaxc[1] |= (*c >> 7) & 0x1; - xmc[13] = (*c >> 4) & 0x7; - xmc[14] = (*c >> 1) & 0x7; - xmc[15] = (*c++ & 0x1) << 2; - xmc[15] |= (*c >> 6) & 0x3; - xmc[16] = (*c >> 3) & 0x7; - xmc[17] = *c++ & 0x7; - xmc[18] = (*c >> 5) & 0x7; - xmc[19] = (*c >> 2) & 0x7; - xmc[20] = (*c++ & 0x3) << 1; - xmc[20] |= (*c >> 7) & 0x1; - xmc[21] = (*c >> 4) & 0x7; - xmc[22] = (*c >> 1) & 0x7; - xmc[23] = (*c++ & 0x1) << 2; - xmc[23] |= (*c >> 6) & 0x3; - xmc[24] = (*c >> 3) & 0x7; - xmc[25] = *c++ & 0x7; - Nc[2] = (*c >> 1) & 0x7F; - bc[2] = (*c++ & 0x1) << 1; /* 20 */ - bc[2] |= (*c >> 7) & 0x1; - Mc[2] = (*c >> 5) & 0x3; - xmaxc[2] = (*c++ & 0x1F) << 1; - xmaxc[2] |= (*c >> 7) & 0x1; - xmc[26] = (*c >> 4) & 0x7; - xmc[27] = (*c >> 1) & 0x7; - xmc[28] = (*c++ & 0x1) << 2; - xmc[28] |= (*c >> 6) & 0x3; - xmc[29] = (*c >> 3) & 0x7; - xmc[30] = *c++ & 0x7; - xmc[31] = (*c >> 5) & 0x7; - xmc[32] = (*c >> 2) & 0x7; - xmc[33] = (*c++ & 0x3) << 1; - xmc[33] |= (*c >> 7) & 0x1; - xmc[34] = (*c >> 4) & 0x7; - xmc[35] = (*c >> 1) & 0x7; - xmc[36] = (*c++ & 0x1) << 2; - xmc[36] |= (*c >> 6) & 0x3; - xmc[37] = (*c >> 3) & 0x7; - xmc[38] = *c++ & 0x7; - Nc[3] = (*c >> 1) & 0x7F; - bc[3] = (*c++ & 0x1) << 1; - bc[3] |= (*c >> 7) & 0x1; - Mc[3] = (*c >> 5) & 0x3; - xmaxc[3] = (*c++ & 0x1F) << 1; - xmaxc[3] |= (*c >> 7) & 0x1; - xmc[39] = (*c >> 4) & 0x7; - xmc[40] = (*c >> 1) & 0x7; - xmc[41] = (*c++ & 0x1) << 2; - xmc[41] |= (*c >> 6) & 0x3; - xmc[42] = (*c >> 3) & 0x7; - xmc[43] = *c++ & 0x7; /* 30 */ - xmc[44] = (*c >> 5) & 0x7; - xmc[45] = (*c >> 2) & 0x7; - xmc[46] = (*c++ & 0x3) << 1; - xmc[46] |= (*c >> 7) & 0x1; - xmc[47] = (*c >> 4) & 0x7; - xmc[48] = (*c >> 1) & 0x7; - xmc[49] = (*c++ & 0x1) << 2; - xmc[49] |= (*c >> 6) & 0x3; - xmc[50] = (*c >> 3) & 0x7; - xmc[51] = *c & 0x7; /* 33 */ - } - - Gsm_Decoder(s, LARc, Nc, bc, Mc, xmaxc, xmc, target); - - return 0; -} diff --git a/src/libxineadec/gsm610/gsm_destroy.c b/src/libxineadec/gsm610/gsm_destroy.c deleted file mode 100644 index 481a74660..000000000 --- a/src/libxineadec/gsm610/gsm_destroy.c +++ /dev/null @@ -1,26 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/gsm_destroy.c,v 1.1 2002/10/12 19:12:49 tmmm Exp $ */ - -#include "gsm.h" -#include "gsm_config.h" -#include "proto.h" - -#ifdef HAS_STDLIB_H -# include <stdlib.h> -#else -# ifdef HAS_MALLOC_H -# include <malloc.h> -# else - extern void free(); -# endif -#endif - -void gsm_destroy P1((S), gsm S) -{ - if (S) free((char *)S); -} diff --git a/src/libxineadec/gsm610/long_term.c b/src/libxineadec/gsm610/long_term.c deleted file mode 100644 index 625662e1f..000000000 --- a/src/libxineadec/gsm610/long_term.c +++ /dev/null @@ -1,960 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/long_term.c,v 1.3 2003/12/07 15:34:30 f1rmb Exp $ */ - -#include <stdio.h> -#include "xineutils.h" - -#include "private.h" - -#include "gsm.h" -#include "proto.h" - -/* - * 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION - */ - - -/* - * This module computes the LTP gain (bc) and the LTP lag (Nc) - * for the long term analysis filter. This is done by calculating a - * maximum of the cross-correlation function between the current - * sub-segment short term residual signal d[0..39] (output of - * the short term analysis filter; for simplification the index - * of this array begins at 0 and ends at 39 for each sub-segment of the - * RPE-LTP analysis) and the previous reconstructed short term - * residual signal dp[ -120 .. -1 ]. A dynamic scaling must be - * performed to avoid overflow. - */ - - /* The next procedure exists in six versions. First two integer - * version (if USE_FLOAT_MUL is not defined); then four floating - * point versions, twice with proper scaling (USE_FLOAT_MUL defined), - * once without (USE_FLOAT_MUL and FAST defined, and fast run-time - * option used). Every pair has first a Cut version (see the -C - * option to toast or the LTP_CUT option to gsm_option()), then the - * uncut one. (For a detailed explanation of why this is altogether - * a bad idea, see Henry Spencer and Geoff Collyer, ``#ifdef Considered - * Harmful''.) -a */ - -#ifndef USE_FLOAT_MUL - -#ifdef LTP_CUT - -static void Cut_Calculation_of_the_LTP_parameters P5((st, d,dp,bc_out,Nc_out), - - struct gsm_state * st, - - register word * d, /* [0..39] IN */ - register word * dp, /* [-120..-1] IN */ - word * bc_out, /* OUT */ - word * Nc_out /* OUT */ -) -{ - register int k, lambda; - word Nc, bc; - word wt[40]; - - longword L_result; - longword L_max, L_power; - word R, S, dmax, scal, best_k; - word ltp_cut; - - register word temp, wt_k; - - /* Search of the optimum scaling of d[0..39]. - */ - dmax = 0; - for (k = 0; k <= 39; k++) { - temp = d[k]; - temp = GSM_ABS( temp ); - if (temp > dmax) { - dmax = temp; - best_k = k; - } - } - temp = 0; - if (dmax == 0) scal = 0; - else { - _x_assert(dmax > 0); - temp = gsm_norm( (longword)dmax << 16 ); - } - if (temp > 6) scal = 0; - else scal = 6 - temp; - - _x_assert(scal >= 0); - - /* Search for the maximum cross-correlation and coding of the LTP lag - */ - L_max = 0; - Nc = 40; /* index for the maximum cross-correlation */ - wt_k = SASR(d[best_k], scal); - - for (lambda = 40; lambda <= 120; lambda++) { - L_result = (longword)wt_k * dp[best_k - lambda]; - if (L_result > L_max) { - Nc = lambda; - L_max = L_result; - } - } - *Nc_out = Nc; - L_max <<= 1; - - /* Rescaling of L_max - */ - _x_assert((scal <= 100) && (scal >= -100)); - L_max = L_max >> (6 - scal); /* sub(6, scal) */ - - _x_assert(Nc <= 120 && Nc >= 40); - - /* Compute the power of the reconstructed short term residual - * signal dp[..] - */ - L_power = 0; - for (k = 0; k <= 39; k++) { - - register longword L_temp; - - L_temp = SASR( dp[k - Nc], 3 ); - L_power += L_temp * L_temp; - } - L_power <<= 1; /* from L_MULT */ - - /* Normalization of L_max and L_power - */ - - if (L_max <= 0) { - *bc_out = 0; - return; - } - if (L_max >= L_power) { - *bc_out = 3; - return; - } - - temp = gsm_norm( L_power ); - - R = SASR( L_max << temp, 16 ); - S = SASR( L_power << temp, 16 ); - - /* Coding of the LTP gain - */ - - /* Table 4.3a must be used to obtain the level DLB[i] for the - * quantization of the LTP gain b to get the coded version bc. - */ - for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break; - *bc_out = bc; -} - -#endif /* LTP_CUT */ - -static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out), - register word * d, /* [0..39] IN */ - register word * dp, /* [-120..-1] IN */ - word * bc_out, /* OUT */ - word * Nc_out /* OUT */ -) -{ - register int k, lambda; - word Nc, bc; - word wt[40]; - - longword L_max, L_power; - word R, S, dmax, scal; - register word temp; - - /* Search of the optimum scaling of d[0..39]. - */ - dmax = 0; - - for (k = 0; k <= 39; k++) { - temp = d[k]; - temp = GSM_ABS( temp ); - if (temp > dmax) dmax = temp; - } - - temp = 0; - if (dmax == 0) scal = 0; - else { - _x_assert(dmax > 0); - temp = gsm_norm( (longword)dmax << 16 ); - } - - if (temp > 6) scal = 0; - else scal = 6 - temp; - - _x_assert(scal >= 0); - - /* Initialization of a working array wt - */ - - for (k = 0; k <= 39; k++) wt[k] = SASR( d[k], scal ); - - /* Search for the maximum cross-correlation and coding of the LTP lag - */ - L_max = 0; - Nc = 40; /* index for the maximum cross-correlation */ - - for (lambda = 40; lambda <= 120; lambda++) { - -# undef STEP -# define STEP(k) (longword)wt[k] * dp[k - lambda] - - register longword L_result; - - L_result = STEP(0) ; L_result += STEP(1) ; - L_result += STEP(2) ; L_result += STEP(3) ; - L_result += STEP(4) ; L_result += STEP(5) ; - L_result += STEP(6) ; L_result += STEP(7) ; - L_result += STEP(8) ; L_result += STEP(9) ; - L_result += STEP(10) ; L_result += STEP(11) ; - L_result += STEP(12) ; L_result += STEP(13) ; - L_result += STEP(14) ; L_result += STEP(15) ; - L_result += STEP(16) ; L_result += STEP(17) ; - L_result += STEP(18) ; L_result += STEP(19) ; - L_result += STEP(20) ; L_result += STEP(21) ; - L_result += STEP(22) ; L_result += STEP(23) ; - L_result += STEP(24) ; L_result += STEP(25) ; - L_result += STEP(26) ; L_result += STEP(27) ; - L_result += STEP(28) ; L_result += STEP(29) ; - L_result += STEP(30) ; L_result += STEP(31) ; - L_result += STEP(32) ; L_result += STEP(33) ; - L_result += STEP(34) ; L_result += STEP(35) ; - L_result += STEP(36) ; L_result += STEP(37) ; - L_result += STEP(38) ; L_result += STEP(39) ; - - if (L_result > L_max) { - - Nc = lambda; - L_max = L_result; - } - } - - *Nc_out = Nc; - - L_max <<= 1; - - /* Rescaling of L_max - */ - _x_assert( (scal <= 100) && (scal >= -100)); - L_max = L_max >> (6 - scal); /* sub(6, scal) */ - - _x_assert( Nc <= 120 && Nc >= 40); - - /* Compute the power of the reconstructed short term residual - * signal dp[..] - */ - L_power = 0; - for (k = 0; k <= 39; k++) { - - register longword L_temp; - - L_temp = SASR( dp[k - Nc], 3 ); - L_power += L_temp * L_temp; - } - L_power <<= 1; /* from L_MULT */ - - /* Normalization of L_max and L_power - */ - - if (L_max <= 0) { - *bc_out = 0; - return; - } - if (L_max >= L_power) { - *bc_out = 3; - return; - } - - temp = gsm_norm( L_power ); - - R = SASR( L_max << temp, 16 ); - S = SASR( L_power << temp, 16 ); - - /* Coding of the LTP gain - */ - - /* Table 4.3a must be used to obtain the level DLB[i] for the - * quantization of the LTP gain b to get the coded version bc. - */ - for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break; - *bc_out = bc; -} - -#else /* USE_FLOAT_MUL */ - -#ifdef LTP_CUT - -static void Cut_Calculation_of_the_LTP_parameters P5((st, d,dp,bc_out,Nc_out), - struct gsm_state * st, /* IN */ - register word * d, /* [0..39] IN */ - register word * dp, /* [-120..-1] IN */ - word * bc_out, /* OUT */ - word * Nc_out /* OUT */ -) -{ - register int k, lambda; - word Nc, bc; - word ltp_cut; - - float wt_float[40]; - float dp_float_base[120], * dp_float = dp_float_base + 120; - - longword L_max, L_power; - word R, S, dmax, scal; - register word temp; - - /* Search of the optimum scaling of d[0..39]. - */ - dmax = 0; - - for (k = 0; k <= 39; k++) { - temp = d[k]; - temp = GSM_ABS( temp ); - if (temp > dmax) dmax = temp; - } - - temp = 0; - if (dmax == 0) scal = 0; - else { - _x_assert(dmax > 0); - - temp = gsm_norm( (longword)dmax << 16 ); - } - - if (temp > 6) scal = 0; - else scal = 6 - temp; - - _x_assert(scal >= 0); - - ltp_cut = (longword)SASR(dmax, scal) * st->ltp_cut / 100; - - - /* Initialization of a working array wt - */ - - for (k = 0; k < 40; k++) { - register word w = SASR( d[k], scal ); - if (w < 0 ? w > -ltp_cut : w < ltp_cut) { - wt_float[k] = 0.0; - } - else { - wt_float[k] = w; - } - } - for (k = -120; k < 0; k++) dp_float[k] = dp[k]; - - /* Search for the maximum cross-correlation and coding of the LTP lag - */ - L_max = 0; - Nc = 40; /* index for the maximum cross-correlation */ - - for (lambda = 40; lambda <= 120; lambda += 9) { - - /* Calculate L_result for l = lambda .. lambda + 9. - */ - register float *lp = dp_float - lambda; - - register float W; - register float a = lp[-8], b = lp[-7], c = lp[-6], - d = lp[-5], e = lp[-4], f = lp[-3], - g = lp[-2], h = lp[-1]; - register float E; - register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0, - S5 = 0, S6 = 0, S7 = 0, S8 = 0; - -# undef STEP -# define STEP(K, a, b, c, d, e, f, g, h) \ - if ((W = wt_float[K]) != 0.0) { \ - E = W * a; S8 += E; \ - E = W * b; S7 += E; \ - E = W * c; S6 += E; \ - E = W * d; S5 += E; \ - E = W * e; S4 += E; \ - E = W * f; S3 += E; \ - E = W * g; S2 += E; \ - E = W * h; S1 += E; \ - a = lp[K]; \ - E = W * a; S0 += E; } else (a = lp[K]) - -# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h) -# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a) -# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b) -# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c) -# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d) -# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e) -# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f) -# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g) - - STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3); - STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7); - - STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11); - STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15); - - STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19); - STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23); - - STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27); - STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31); - - STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35); - STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39); - - if (S0 > L_max) { L_max = S0; Nc = lambda; } - if (S1 > L_max) { L_max = S1; Nc = lambda + 1; } - if (S2 > L_max) { L_max = S2; Nc = lambda + 2; } - if (S3 > L_max) { L_max = S3; Nc = lambda + 3; } - if (S4 > L_max) { L_max = S4; Nc = lambda + 4; } - if (S5 > L_max) { L_max = S5; Nc = lambda + 5; } - if (S6 > L_max) { L_max = S6; Nc = lambda + 6; } - if (S7 > L_max) { L_max = S7; Nc = lambda + 7; } - if (S8 > L_max) { L_max = S8; Nc = lambda + 8; } - - } - *Nc_out = Nc; - - L_max <<= 1; - - /* Rescaling of L_max - */ - _x_assert( (scal <= 100) && (scal >= -100)); - - L_max = L_max >> (6 - scal); /* sub(6, scal) */ - - _x_assert( Nc <= 120 && Nc >= 40); - - /* Compute the power of the reconstructed short term residual - * signal dp[..] - */ - L_power = 0; - for (k = 0; k <= 39; k++) { - - register longword L_temp; - - L_temp = SASR( dp[k - Nc], 3 ); - L_power += L_temp * L_temp; - } - L_power <<= 1; /* from L_MULT */ - - /* Normalization of L_max and L_power - */ - - if (L_max <= 0) { - *bc_out = 0; - return; - } - if (L_max >= L_power) { - *bc_out = 3; - return; - } - - temp = gsm_norm( L_power ); - - R = SASR( L_max << temp, 16 ); - S = SASR( L_power << temp, 16 ); - - /* Coding of the LTP gain - */ - - /* Table 4.3a must be used to obtain the level DLB[i] for the - * quantization of the LTP gain b to get the coded version bc. - */ - for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break; - *bc_out = bc; -} - -#endif /* LTP_CUT */ - -static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out), - register word * d, /* [0..39] IN */ - register word * dp, /* [-120..-1] IN */ - word * bc_out, /* OUT */ - word * Nc_out /* OUT */ -) -{ - register int k, lambda; - word Nc, bc; - - float wt_float[40]; - float dp_float_base[120], * dp_float = dp_float_base + 120; - - longword L_max, L_power; - word R, S, dmax, scal; - register word temp; - - /* Search of the optimum scaling of d[0..39]. - */ - dmax = 0; - - for (k = 0; k <= 39; k++) { - temp = d[k]; - temp = GSM_ABS( temp ); - if (temp > dmax) dmax = temp; - } - - temp = 0; - if (dmax == 0) scal = 0; - else { - _x_assert(dmax > 0); - temp = gsm_norm( (longword)dmax << 16 ); - } - - if (temp > 6) scal = 0; - else scal = 6 - temp; - - _x_assert(scal >= 0); - - /* Initialization of a working array wt - */ - - for (k = 0; k < 40; k++) wt_float[k] = SASR( d[k], scal ); - for (k = -120; k < 0; k++) dp_float[k] = dp[k]; - - /* Search for the maximum cross-correlation and coding of the LTP lag - */ - L_max = 0; - Nc = 40; /* index for the maximum cross-correlation */ - - for (lambda = 40; lambda <= 120; lambda += 9) { - - /* Calculate L_result for l = lambda .. lambda + 9. - */ - register float *lp = dp_float - lambda; - - register float W; - register float a = lp[-8], b = lp[-7], c = lp[-6], - d = lp[-5], e = lp[-4], f = lp[-3], - g = lp[-2], h = lp[-1]; - register float E; - register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0, - S5 = 0, S6 = 0, S7 = 0, S8 = 0; - -# undef STEP -# define STEP(K, a, b, c, d, e, f, g, h) \ - W = wt_float[K]; \ - E = W * a; S8 += E; \ - E = W * b; S7 += E; \ - E = W * c; S6 += E; \ - E = W * d; S5 += E; \ - E = W * e; S4 += E; \ - E = W * f; S3 += E; \ - E = W * g; S2 += E; \ - E = W * h; S1 += E; \ - a = lp[K]; \ - E = W * a; S0 += E - -# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h) -# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a) -# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b) -# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c) -# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d) -# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e) -# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f) -# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g) - - STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3); - STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7); - - STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11); - STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15); - - STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19); - STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23); - - STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27); - STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31); - - STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35); - STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39); - - if (S0 > L_max) { L_max = S0; Nc = lambda; } - if (S1 > L_max) { L_max = S1; Nc = lambda + 1; } - if (S2 > L_max) { L_max = S2; Nc = lambda + 2; } - if (S3 > L_max) { L_max = S3; Nc = lambda + 3; } - if (S4 > L_max) { L_max = S4; Nc = lambda + 4; } - if (S5 > L_max) { L_max = S5; Nc = lambda + 5; } - if (S6 > L_max) { L_max = S6; Nc = lambda + 6; } - if (S7 > L_max) { L_max = S7; Nc = lambda + 7; } - if (S8 > L_max) { L_max = S8; Nc = lambda + 8; } - } - *Nc_out = Nc; - - L_max <<= 1; - - /* Rescaling of L_max - */ - - _x_assert( (scal <= 100) && (scal >= -100)); - - L_max = L_max >> (6 - scal); /* sub(6, scal) */ - - _x_assert( Nc <= 120 && Nc >= 40); - - - /* Compute the power of the reconstructed short term residual - * signal dp[..] - */ - L_power = 0; - for (k = 0; k <= 39; k++) { - - register longword L_temp; - - L_temp = SASR( dp[k - Nc], 3 ); - L_power += L_temp * L_temp; - } - L_power <<= 1; /* from L_MULT */ - - /* Normalization of L_max and L_power - */ - - if (L_max <= 0) { - *bc_out = 0; - return; - } - if (L_max >= L_power) { - *bc_out = 3; - return; - } - - temp = gsm_norm( L_power ); - - R = SASR( L_max << temp, 16 ); - S = SASR( L_power << temp, 16 ); - - /* Coding of the LTP gain - */ - - /* Table 4.3a must be used to obtain the level DLB[i] for the - * quantization of the LTP gain b to get the coded version bc. - */ - for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break; - *bc_out = bc; -} - -#ifdef FAST -#ifdef LTP_CUT - -static void Cut_Fast_Calculation_of_the_LTP_parameters P5((st, - d,dp,bc_out,Nc_out), - struct gsm_state * st, /* IN */ - register word * d, /* [0..39] IN */ - register word * dp, /* [-120..-1] IN */ - word * bc_out, /* OUT */ - word * Nc_out /* OUT */ -) -{ - register int k, lambda; - register float wt_float; - word Nc, bc; - word wt_max, best_k, ltp_cut; - - float dp_float_base[120], * dp_float = dp_float_base + 120; - - register float L_result, L_max, L_power; - - wt_max = 0; - - for (k = 0; k < 40; ++k) { - if ( d[k] > wt_max) wt_max = d[best_k = k]; - else if (-d[k] > wt_max) wt_max = -d[best_k = k]; - } - - _x_assert(wt_max >= 0); - wt_float = (float)wt_max; - - for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k]; - - /* Search for the maximum cross-correlation and coding of the LTP lag - */ - L_max = 0; - Nc = 40; /* index for the maximum cross-correlation */ - - for (lambda = 40; lambda <= 120; lambda++) { - L_result = wt_float * dp_float[best_k - lambda]; - if (L_result > L_max) { - Nc = lambda; - L_max = L_result; - } - } - - *Nc_out = Nc; - if (L_max <= 0.) { - *bc_out = 0; - return; - } - - /* Compute the power of the reconstructed short term residual - * signal dp[..] - */ - dp_float -= Nc; - L_power = 0; - for (k = 0; k < 40; ++k) { - register float f = dp_float[k]; - L_power += f * f; - } - - if (L_max >= L_power) { - *bc_out = 3; - return; - } - - /* Coding of the LTP gain - * Table 4.3a must be used to obtain the level DLB[i] for the - * quantization of the LTP gain b to get the coded version bc. - */ - lambda = L_max / L_power * 32768.; - for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break; - *bc_out = bc; -} - -#endif /* LTP_CUT */ - -static void Fast_Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out), - register word * d, /* [0..39] IN */ - register word * dp, /* [-120..-1] IN */ - word * bc_out, /* OUT */ - word * Nc_out /* OUT */ -) -{ - register int k, lambda; - word Nc, bc; - - float wt_float[40]; - float dp_float_base[120], * dp_float = dp_float_base + 120; - - register float L_max, L_power; - - for (k = 0; k < 40; ++k) wt_float[k] = (float)d[k]; - for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k]; - - /* Search for the maximum cross-correlation and coding of the LTP lag - */ - L_max = 0; - Nc = 40; /* index for the maximum cross-correlation */ - - for (lambda = 40; lambda <= 120; lambda += 9) { - - /* Calculate L_result for l = lambda .. lambda + 9. - */ - register float *lp = dp_float - lambda; - - register float W; - register float a = lp[-8], b = lp[-7], c = lp[-6], - d = lp[-5], e = lp[-4], f = lp[-3], - g = lp[-2], h = lp[-1]; - register float E; - register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0, - S5 = 0, S6 = 0, S7 = 0, S8 = 0; - -# undef STEP -# define STEP(K, a, b, c, d, e, f, g, h) \ - W = wt_float[K]; \ - E = W * a; S8 += E; \ - E = W * b; S7 += E; \ - E = W * c; S6 += E; \ - E = W * d; S5 += E; \ - E = W * e; S4 += E; \ - E = W * f; S3 += E; \ - E = W * g; S2 += E; \ - E = W * h; S1 += E; \ - a = lp[K]; \ - E = W * a; S0 += E - -# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h) -# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a) -# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b) -# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c) -# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d) -# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e) -# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f) -# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g) - - STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3); - STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7); - - STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11); - STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15); - - STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19); - STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23); - - STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27); - STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31); - - STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35); - STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39); - - if (S0 > L_max) { L_max = S0; Nc = lambda; } - if (S1 > L_max) { L_max = S1; Nc = lambda + 1; } - if (S2 > L_max) { L_max = S2; Nc = lambda + 2; } - if (S3 > L_max) { L_max = S3; Nc = lambda + 3; } - if (S4 > L_max) { L_max = S4; Nc = lambda + 4; } - if (S5 > L_max) { L_max = S5; Nc = lambda + 5; } - if (S6 > L_max) { L_max = S6; Nc = lambda + 6; } - if (S7 > L_max) { L_max = S7; Nc = lambda + 7; } - if (S8 > L_max) { L_max = S8; Nc = lambda + 8; } - } - *Nc_out = Nc; - - if (L_max <= 0.) { - *bc_out = 0; - return; - } - - /* Compute the power of the reconstructed short term residual - * signal dp[..] - */ - dp_float -= Nc; - L_power = 0; - for (k = 0; k < 40; ++k) { - register float f = dp_float[k]; - L_power += f * f; - } - - if (L_max >= L_power) { - *bc_out = 3; - return; - } - - /* Coding of the LTP gain - * Table 4.3a must be used to obtain the level DLB[i] for the - * quantization of the LTP gain b to get the coded version bc. - */ - lambda = L_max / L_power * 32768.; - for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break; - *bc_out = bc; -} - -#endif /* FAST */ -#endif /* USE_FLOAT_MUL */ - - -/* 4.2.12 */ - -static void Long_term_analysis_filtering P6((bc,Nc,dp,d,dpp,e), - word bc, /* IN */ - word Nc, /* IN */ - register word * dp, /* previous d [-120..-1] IN */ - register word * d, /* d [0..39] IN */ - register word * dpp, /* estimate [0..39] OUT */ - register word * e /* long term res. signal [0..39] OUT */ -) -/* - * In this part, we have to decode the bc parameter to compute - * the samples of the estimate dpp[0..39]. The decoding of bc needs the - * use of table 4.3b. The long term residual signal e[0..39] - * is then calculated to be fed to the RPE encoding section. - */ -{ - register int k; - register longword ltmp; - -# undef STEP -# define STEP(BP) \ - for (k = 0; k <= 39; k++) { \ - dpp[k] = GSM_MULT_R( BP, dp[k - Nc]); \ - e[k] = GSM_SUB( d[k], dpp[k] ); \ - } - - switch (bc) { - case 0: STEP( 3277 ); break; - case 1: STEP( 11469 ); break; - case 2: STEP( 21299 ); break; - case 3: STEP( 32767 ); break; - } -} - -void Gsm_Long_Term_Predictor P7((S,d,dp,e,dpp,Nc,bc), /* 4x for 160 samples */ - - struct gsm_state * S, - - word * d, /* [0..39] residual signal IN */ - word * dp, /* [-120..-1] d' IN */ - - word * e, /* [0..39] OUT */ - word * dpp, /* [0..39] OUT */ - word * Nc, /* correlation lag OUT */ - word * bc /* gain factor OUT */ -) -{ - _x_assert( d ); - _x_assert( dp ); - _x_assert( e ); - _x_assert( dpp ); - _x_assert( Nc ); - _x_assert( bc ); - -#if defined(FAST) && defined(USE_FLOAT_MUL) - if (S->fast) -#if defined (LTP_CUT) - if (S->ltp_cut) - Cut_Fast_Calculation_of_the_LTP_parameters(S, - d, dp, bc, Nc); - else -#endif /* LTP_CUT */ - Fast_Calculation_of_the_LTP_parameters(d, dp, bc, Nc ); - else -#endif /* FAST & USE_FLOAT_MUL */ -#ifdef LTP_CUT - if (S->ltp_cut) - Cut_Calculation_of_the_LTP_parameters(S, d, dp, bc, Nc); - else -#endif - Calculation_of_the_LTP_parameters(d, dp, bc, Nc); - - Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e ); -} - -/* 4.3.2 */ -void Gsm_Long_Term_Synthesis_Filtering P5((S,Ncr,bcr,erp,drp), - struct gsm_state * S, - - word Ncr, - word bcr, - register word * erp, /* [0..39] IN */ - register word * drp /* [-120..-1] IN, [-120..40] OUT */ -) -/* - * This procedure uses the bcr and Ncr parameter to realize the - * long term synthesis filtering. The decoding of bcr needs - * table 4.3b. - */ -{ - register longword ltmp; /* for ADD */ - register int k; - word brp, drpp, Nr; - - /* Check the limits of Nr. - */ - Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr; - S->nrp = Nr; - _x_assert(Nr >= 40 && Nr <= 120); - - /* Decoding of the LTP gain bcr - */ - brp = gsm_QLB[ bcr ]; - - /* Computation of the reconstructed short term residual - * signal drp[0..39] - */ - _x_assert(brp != MIN_WORD); - - for (k = 0; k <= 39; k++) { - drpp = GSM_MULT_R( brp, drp[ k - Nr ] ); - drp[k] = GSM_ADD( erp[k], drpp ); - } - - /* - * Update of the reconstructed short term residual signal - * drp[ -1..-120 ] - */ - - for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ]; -} diff --git a/src/libxineadec/gsm610/lpc.c b/src/libxineadec/gsm610/lpc.c deleted file mode 100644 index 0f51fa55f..000000000 --- a/src/libxineadec/gsm610/lpc.c +++ /dev/null @@ -1,350 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/lpc.c,v 1.3 2003/12/07 15:34:30 f1rmb Exp $ */ - -#include <stdio.h> -#include "xineutils.h" - -#include "private.h" - -#include "gsm.h" -#include "proto.h" - -#undef P - -/* - * 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION - */ - -/* 4.2.4 */ - - -static void Autocorrelation P2((s, L_ACF), - word * s, /* [0..159] IN/OUT */ - longword * L_ACF) /* [0..8] OUT */ -/* - * The goal is to compute the array L_ACF[k]. The signal s[i] must - * be scaled in order to avoid an overflow situation. - */ -{ - register int k, i; - - word temp, smax, scalauto; - -#ifdef USE_FLOAT_MUL - float float_s[160]; -#endif - - /* Dynamic scaling of the array s[0..159] - */ - - /* Search for the maximum. - */ - smax = 0; - for (k = 0; k <= 159; k++) { - temp = GSM_ABS( s[k] ); - if (temp > smax) smax = temp; - } - - /* Computation of the scaling factor. - */ - if (smax == 0) scalauto = 0; - else { - _x_assert(smax > 0); - scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */ - } - - /* Scaling of the array s[0...159] - */ - - if (scalauto > 0) { - -# ifdef USE_FLOAT_MUL -# define SCALE(n) \ - case n: for (k = 0; k <= 159; k++) \ - float_s[k] = (float) \ - (s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\ - break; -# else -# define SCALE(n) \ - case n: for (k = 0; k <= 159; k++) \ - s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\ - break; -# endif /* USE_FLOAT_MUL */ - - switch (scalauto) { - SCALE(1) - SCALE(2) - SCALE(3) - SCALE(4) - } -# undef SCALE - } -# ifdef USE_FLOAT_MUL - else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k]; -# endif - - /* Compute the L_ACF[..]. - */ - { -# ifdef USE_FLOAT_MUL - register float * sp = float_s; - register float sl = *sp; - -# define STEP(k) L_ACF[k] += (longword)(sl * sp[ -(k) ]); -# else - word * sp = s; - word sl = *sp; - -# define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]); -# endif - -# define NEXTI sl = *++sp - - - for (k = 9; k--; L_ACF[k] = 0) ; - - STEP (0); - NEXTI; - STEP(0); STEP(1); - NEXTI; - STEP(0); STEP(1); STEP(2); - NEXTI; - STEP(0); STEP(1); STEP(2); STEP(3); - NEXTI; - STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); - NEXTI; - STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); - NEXTI; - STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); - NEXTI; - STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7); - - for (i = 8; i <= 159; i++) { - - NEXTI; - - STEP(0); - STEP(1); STEP(2); STEP(3); STEP(4); - STEP(5); STEP(6); STEP(7); STEP(8); - } - - for (k = 9; k--; L_ACF[k] <<= 1) ; - - } - /* Rescaling of the array s[0..159] - */ - if (scalauto > 0) { - _x_assert(scalauto <= 4); - for (k = 160; k--; *s++ <<= scalauto) ; - } -} - -#if defined(USE_FLOAT_MUL) && defined(FAST) - -static void Fast_Autocorrelation P2((s, L_ACF), - word * s, /* [0..159] IN/OUT */ - longword * L_ACF) /* [0..8] OUT */ -{ - register int k, i; - float f_L_ACF[9]; - float scale; - - float s_f[160]; - register float *sf = s_f; - - for (i = 0; i < 160; ++i) sf[i] = s[i]; - for (k = 0; k <= 8; k++) { - register float L_temp2 = 0; - register float *sfl = sf - k; - for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i]; - f_L_ACF[k] = L_temp2; - } - scale = MAX_LONGWORD / f_L_ACF[0]; - - for (k = 0; k <= 8; k++) { - L_ACF[k] = f_L_ACF[k] * scale; - } -} -#endif /* defined (USE_FLOAT_MUL) && defined (FAST) */ - -/* 4.2.5 */ - -static void Reflection_coefficients P2( (L_ACF, r), - longword * L_ACF, /* 0...8 IN */ - register word * r /* 0...7 OUT */ -) -{ - register int i, m, n; - register word temp; - register longword ltmp; - word ACF[9]; /* 0..8 */ - word P[ 9]; /* 0..8 */ - word K[ 9]; /* 2..8 */ - - /* Schur recursion with 16 bits arithmetic. - */ - - if (L_ACF[0] == 0) { - for (i = 8; i--; *r++ = 0) ; - return; - } - - _x_assert( L_ACF[0] != 0 ); - temp = gsm_norm( L_ACF[0] ); - - _x_assert(temp >= 0 && temp < 32); - - /* ? overflow ? */ - for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 ); - - /* Initialize array P[..] and K[..] for the recursion. - */ - - for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ]; - for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ]; - - /* Compute reflection coefficients - */ - for (n = 1; n <= 8; n++, r++) { - - temp = P[1]; - temp = GSM_ABS(temp); - if (P[0] < temp) { - for (i = n; i <= 8; i++) *r++ = 0; - return; - } - - *r = gsm_div( temp, P[0] ); - - _x_assert(*r >= 0); - - if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */ - - _x_assert(*r != MIN_WORD); - - if (n == 8) return; - - /* Schur recursion - */ - temp = GSM_MULT_R( P[1], *r ); - P[0] = GSM_ADD( P[0], temp ); - - for (m = 1; m <= 8 - n; m++) { - temp = GSM_MULT_R( K[ m ], *r ); - P[m] = GSM_ADD( P[ m+1 ], temp ); - - temp = GSM_MULT_R( P[ m+1 ], *r ); - K[m] = GSM_ADD( K[ m ], temp ); - } - } -} - -/* 4.2.6 */ - -static void Transformation_to_Log_Area_Ratios P1((r), - register word * r /* 0..7 IN/OUT */ -) -/* - * The following scaling for r[..] and LAR[..] has been used: - * - * r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1. - * LAR[..] = integer( real_LAR[..] * 16384 ); - * with -1.625 <= real_LAR <= 1.625 - */ -{ - register word temp; - register int i; - - - /* Computation of the LAR[0..7] from the r[0..7] - */ - for (i = 1; i <= 8; i++, r++) { - - temp = *r; - temp = GSM_ABS(temp); - - _x_assert(temp >= 0); - - if (temp < 22118) { - temp >>= 1; - } else if (temp < 31130) { - _x_assert(temp >= 11059); - temp -= 11059; - } else { - _x_assert(temp >= 26112); - temp -= 26112; - temp <<= 2; - } - - if (*r < 0) { - *r = -temp; - } - else { - *r = temp; - } - _x_assert(*r != MIN_WORD); - } -} - -/* 4.2.7 */ - -static void Quantization_and_coding P1((LAR), - register word * LAR /* [0..7] IN/OUT */ -) -{ - register word temp; - longword ltmp; - - - /* This procedure needs four tables; the following equations - * give the optimum scaling for the constants: - * - * A[0..7] = integer( real_A[0..7] * 1024 ) - * B[0..7] = integer( real_B[0..7] * 512 ) - * MAC[0..7] = maximum of the LARc[0..7] - * MIC[0..7] = minimum of the LARc[0..7] - */ - -# undef STEP -# define STEP( A, B, MAC, MIC ) \ - temp = GSM_MULT( A, *LAR ); \ - temp = GSM_ADD( temp, B ); \ - temp = GSM_ADD( temp, 256 ); \ - temp = SASR( temp, 9 ); \ - *LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \ - LAR++; - - STEP( 20480, 0, 31, -32 ); - STEP( 20480, 0, 31, -32 ); - STEP( 20480, 2048, 15, -16 ); - STEP( 20480, -2560, 15, -16 ); - - STEP( 13964, 94, 7, -8 ); - STEP( 15360, -1792, 7, -8 ); - STEP( 8534, -341, 3, -4 ); - STEP( 9036, -1144, 3, -4 ); - -# undef STEP -} - -void Gsm_LPC_Analysis P3((S, s,LARc), - struct gsm_state *S, - word * s, /* 0..159 signals IN/OUT */ - word * LARc) /* 0..7 LARc's OUT */ -{ - longword L_ACF[9]; - -#if defined(USE_FLOAT_MUL) && defined(FAST) - if (S->fast) Fast_Autocorrelation (s, L_ACF ); - else -#endif - Autocorrelation (s, L_ACF ); - Reflection_coefficients (L_ACF, LARc ); - Transformation_to_Log_Area_Ratios (LARc); - Quantization_and_coding (LARc); -} diff --git a/src/libxineadec/gsm610/private.h b/src/libxineadec/gsm610/private.h deleted file mode 100644 index 33a5172b0..000000000 --- a/src/libxineadec/gsm610/private.h +++ /dev/null @@ -1,268 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/*$Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/private.h,v 1.1 2002/10/12 19:12:49 tmmm Exp $*/ - -#ifndef PRIVATE_H -#define PRIVATE_H - -typedef short word; /* 16 bit signed int */ -typedef long longword; /* 32 bit signed int */ - -typedef unsigned short uword; /* unsigned word */ -typedef unsigned long ulongword; /* unsigned longword */ - -struct gsm_state { - - word dp0[ 280 ]; - - word z1; /* preprocessing.c, Offset_com. */ - longword L_z2; /* Offset_com. */ - int mp; /* Preemphasis */ - - word u[8]; /* short_term_aly_filter.c */ - word LARpp[2][8]; /* */ - word j; /* */ - - word ltp_cut; /* long_term.c, LTP crosscorr. */ - word nrp; /* 40 */ /* long_term.c, synthesis */ - word v[9]; /* short_term.c, synthesis */ - word msr; /* decoder.c, Postprocessing */ - - char verbose; /* only used if !NDEBUG */ - char fast; /* only used if FAST */ - - char wav_fmt; /* only used if WAV49 defined */ - unsigned char frame_index; /* odd/even chaining */ - unsigned char frame_chain; /* half-byte to carry forward */ -}; - - -#define MIN_WORD (-32767 - 1) -#define MAX_WORD 32767 - -#define MIN_LONGWORD (-2147483647 - 1) -#define MAX_LONGWORD 2147483647 - -#ifdef SASR /* flag: >> is a signed arithmetic shift right */ -#undef SASR -#define SASR(x, by) ((x) >> (by)) -#else -#define SASR(x, by) ((x) >= 0 ? (x) >> (by) : (~(-((x) + 1) >> (by)))) -#endif /* SASR */ - -#include "proto.h" - -/* - * Prototypes from add.c - */ -extern word gsm_mult P((word a, word b)); -extern longword gsm_L_mult P((word a, word b)); -extern word gsm_mult_r P((word a, word b)); - -extern word gsm_div P((word num, word denum)); - -extern word gsm_add P(( word a, word b )); -extern longword gsm_L_add P(( longword a, longword b )); - -extern word gsm_sub P((word a, word b)); -extern longword gsm_L_sub P((longword a, longword b)); - -extern word gsm_abs P((word a)); - -extern word gsm_norm P(( longword a )); - -extern longword gsm_L_asl P((longword a, int n)); -extern word gsm_asl P((word a, int n)); - -extern longword gsm_L_asr P((longword a, int n)); -extern word gsm_asr P((word a, int n)); - -/* - * Inlined functions from add.h - */ - -/* - * #define GSM_MULT_R(a, b) (* word a, word b, !(a == b == MIN_WORD) *) \ - * (0x0FFFF & SASR(((longword)(a) * (longword)(b) + 16384), 15)) - */ -#define GSM_MULT_R(a, b) /* word a, word b, !(a == b == MIN_WORD) */ \ - (SASR( ((longword)(a) * (longword)(b) + 16384), 15 )) - -# define GSM_MULT(a,b) /* word a, word b, !(a == b == MIN_WORD) */ \ - (SASR( ((longword)(a) * (longword)(b)), 15 )) - -# define GSM_L_MULT(a, b) /* word a, word b */ \ - (((longword)(a) * (longword)(b)) << 1) - -# define GSM_L_ADD(a, b) \ - ( (a) < 0 ? ( (b) >= 0 ? (a) + (b) \ - : (utmp = (ulongword)-((a) + 1) + (ulongword)-((b) + 1)) \ - >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)utmp-2 ) \ - : ((b) <= 0 ? (a) + (b) \ - : (utmp = (ulongword)(a) + (ulongword)(b)) >= MAX_LONGWORD \ - ? MAX_LONGWORD : utmp)) - -/* - * # define GSM_ADD(a, b) \ - * ((ltmp = (longword)(a) + (longword)(b)) >= MAX_WORD \ - * ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp) - */ -/* Nonportable, but faster: */ - -#define GSM_ADD(a, b) \ - ((ulongword)((ltmp = (longword)(a) + (longword)(b)) - MIN_WORD) > \ - MAX_WORD - MIN_WORD ? (ltmp > 0 ? MAX_WORD : MIN_WORD) : ltmp) - -# define GSM_SUB(a, b) \ - ((ltmp = (longword)(a) - (longword)(b)) >= MAX_WORD \ - ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp) - -# define GSM_ABS(a) ((a) < 0 ? ((a) == MIN_WORD ? MAX_WORD : -(a)) : (a)) - -/* Use these if necessary: - -# define GSM_MULT_R(a, b) gsm_mult_r(a, b) -# define GSM_MULT(a, b) gsm_mult(a, b) -# define GSM_L_MULT(a, b) gsm_L_mult(a, b) - -# define GSM_L_ADD(a, b) gsm_L_add(a, b) -# define GSM_ADD(a, b) gsm_add(a, b) -# define GSM_SUB(a, b) gsm_sub(a, b) - -# define GSM_ABS(a) gsm_abs(a) - -*/ - -/* - * More prototypes from implementations.. - */ -extern void Gsm_Coder P(( - struct gsm_state * S, - word * s, /* [0..159] samples IN */ - word * LARc, /* [0..7] LAR coefficients OUT */ - word * Nc, /* [0..3] LTP lag OUT */ - word * bc, /* [0..3] coded LTP gain OUT */ - word * Mc, /* [0..3] RPE grid selection OUT */ - word * xmaxc,/* [0..3] Coded maximum amplitude OUT */ - word * xMc /* [13*4] normalized RPE samples OUT */)); - -extern void Gsm_Long_Term_Predictor P(( /* 4x for 160 samples */ - struct gsm_state * S, - word * d, /* [0..39] residual signal IN */ - word * dp, /* [-120..-1] d' IN */ - word * e, /* [0..40] OUT */ - word * dpp, /* [0..40] OUT */ - word * Nc, /* correlation lag OUT */ - word * bc /* gain factor OUT */)); - -extern void Gsm_LPC_Analysis P(( - struct gsm_state * S, - word * s, /* 0..159 signals IN/OUT */ - word * LARc)); /* 0..7 LARc's OUT */ - -extern void Gsm_Preprocess P(( - struct gsm_state * S, - word * s, word * so)); - -extern void Gsm_Encoding P(( - struct gsm_state * S, - word * e, - word * ep, - word * xmaxc, - word * Mc, - word * xMc)); - -extern void Gsm_Short_Term_Analysis_Filter P(( - struct gsm_state * S, - word * LARc, /* coded log area ratio [0..7] IN */ - word * d /* st res. signal [0..159] IN/OUT */)); - -extern void Gsm_Decoder P(( - struct gsm_state * S, - word * LARcr, /* [0..7] IN */ - word * Ncr, /* [0..3] IN */ - word * bcr, /* [0..3] IN */ - word * Mcr, /* [0..3] IN */ - word * xmaxcr, /* [0..3] IN */ - word * xMcr, /* [0..13*4] IN */ - word * s)); /* [0..159] OUT */ - -extern void Gsm_Decoding P(( - struct gsm_state * S, - word xmaxcr, - word Mcr, - word * xMcr, /* [0..12] IN */ - word * erp)); /* [0..39] OUT */ - -extern void Gsm_Long_Term_Synthesis_Filtering P(( - struct gsm_state* S, - word Ncr, - word bcr, - word * erp, /* [0..39] IN */ - word * drp)); /* [-120..-1] IN, [0..40] OUT */ - -void Gsm_RPE_Decoding P(( - struct gsm_state *S, - word xmaxcr, - word Mcr, - word * xMcr, /* [0..12], 3 bits IN */ - word * erp)); /* [0..39] OUT */ - -void Gsm_RPE_Encoding P(( - struct gsm_state * S, - word * e, /* -5..-1][0..39][40..44 IN/OUT */ - word * xmaxc, /* OUT */ - word * Mc, /* OUT */ - word * xMc)); /* [0..12] OUT */ - -extern void Gsm_Short_Term_Synthesis_Filter P(( - struct gsm_state * S, - word * LARcr, /* log area ratios [0..7] IN */ - word * drp, /* received d [0...39] IN */ - word * s)); /* signal s [0..159] OUT */ - -extern void Gsm_Update_of_reconstructed_short_time_residual_signal P(( - word * dpp, /* [0...39] IN */ - word * ep, /* [0...39] IN */ - word * dp)); /* [-120...-1] IN/OUT */ - -/* - * Tables from table.c - */ -#ifndef GSM_TABLE_C - -extern word gsm_A[8], gsm_B[8], gsm_MIC[8], gsm_MAC[8]; -extern word gsm_INVA[8]; -extern word gsm_DLB[4], gsm_QLB[4]; -extern word gsm_H[11]; -extern word gsm_NRFAC[8]; -extern word gsm_FAC[8]; - -#endif /* GSM_TABLE_C */ - -/* - * Debugging - */ -#ifdef NDEBUG - -# define gsm_debug_words(a, b, c, d) /* nil */ -# define gsm_debug_longwords(a, b, c, d) /* nil */ -# define gsm_debug_word(a, b) /* nil */ -# define gsm_debug_longword(a, b) /* nil */ - -#else /* !NDEBUG => DEBUG */ - - extern void gsm_debug_words P((char * name, int, int, word *)); - extern void gsm_debug_longwords P((char * name, int, int, longword *)); - extern void gsm_debug_longword P((char * name, longword)); - extern void gsm_debug_word P((char * name, word)); - -#endif /* !NDEBUG */ - -#include "unproto.h" - -#endif /* PRIVATE_H */ diff --git a/src/libxineadec/gsm610/proto.h b/src/libxineadec/gsm610/proto.h deleted file mode 100644 index a80ebf9e4..000000000 --- a/src/libxineadec/gsm610/proto.h +++ /dev/null @@ -1,65 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/*$Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/proto.h,v 1.1 2002/10/12 19:12:49 tmmm Exp $*/ - -#ifndef PROTO_H -#define PROTO_H - -#if __cplusplus -# define NeedFunctionPrototypes 1 -#endif - -#if __STDC__ -# define NeedFunctionPrototypes 1 -#endif - -#ifdef _NO_PROTO -# undef NeedFunctionPrototypes -#endif - -#undef P /* gnu stdio.h actually defines this... */ -#undef P0 -#undef P1 -#undef P2 -#undef P3 -#undef P4 -#undef P5 -#undef P6 -#undef P7 -#undef P8 - -#if NeedFunctionPrototypes - -# define P( protos ) protos - -# define P0() (void) -# define P1(x, a) (a) -# define P2(x, a, b) (a, b) -# define P3(x, a, b, c) (a, b, c) -# define P4(x, a, b, c, d) (a, b, c, d) -# define P5(x, a, b, c, d, e) (a, b, c, d, e) -# define P6(x, a, b, c, d, e, f) (a, b, c, d, e, f) -# define P7(x, a, b, c, d, e, f, g) (a, b, c, d, e, f, g) -# define P8(x, a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h) - -#else /* !NeedFunctionPrototypes */ - -# define P( protos ) ( /* protos */ ) - -# define P0() () -# define P1(x, a) x a; -# define P2(x, a, b) x a; b; -# define P3(x, a, b, c) x a; b; c; -# define P4(x, a, b, c, d) x a; b; c; d; -# define P5(x, a, b, c, d, e) x a; b; c; d; e; -# define P6(x, a, b, c, d, e, f) x a; b; c; d; e; f; -# define P7(x, a, b, c, d, e, f, g) x a; b; c; d; e; f; g; -# define P8(x, a, b, c, d, e, f, g, h) x a; b; c; d; e; f; g; h; - -#endif /* !NeedFunctionPrototypes */ - -#endif /* PROTO_H */ diff --git a/src/libxineadec/gsm610/rpe.c b/src/libxineadec/gsm610/rpe.c deleted file mode 100644 index 67d94d30e..000000000 --- a/src/libxineadec/gsm610/rpe.c +++ /dev/null @@ -1,489 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/rpe.c,v 1.3 2003/12/07 15:34:30 f1rmb Exp $ */ - -#include <stdio.h> -#include "xineutils.h" -#include "private.h" - -#include "gsm.h" -#include "proto.h" - -/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION - */ - -/* 4.2.13 */ - -static void Weighting_filter P2((e, x), - register word * e, /* signal [-5..0.39.44] IN */ - word * x /* signal [0..39] OUT */ -) -/* - * The coefficients of the weighting filter are stored in a table - * (see table 4.4). The following scaling is used: - * - * H[0..10] = integer( real_H[ 0..10] * 8192 ); - */ -{ - /* word wt[ 50 ]; */ - - register longword L_result; - register int k /* , i */ ; - - /* Initialization of a temporary working array wt[0...49] - */ - - /* for (k = 0; k <= 4; k++) wt[k] = 0; - * for (k = 5; k <= 44; k++) wt[k] = *e++; - * for (k = 45; k <= 49; k++) wt[k] = 0; - * - * (e[-5..-1] and e[40..44] are allocated by the caller, - * are initially zero and are not written anywhere.) - */ - e -= 5; - - /* Compute the signal x[0..39] - */ - for (k = 0; k <= 39; k++) { - - L_result = 8192 >> 1; - - /* for (i = 0; i <= 10; i++) { - * L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] ); - * L_result = GSM_L_ADD( L_result, L_temp ); - * } - */ - -#undef STEP -#define STEP( i, H ) (e[ k + i ] * (longword)H) - - /* Every one of these multiplications is done twice -- - * but I don't see an elegant way to optimize this. - * Do you? - */ - -#ifdef STUPID_COMPILER - L_result += STEP( 0, -134 ) ; - L_result += STEP( 1, -374 ) ; - /* + STEP( 2, 0 ) */ - L_result += STEP( 3, 2054 ) ; - L_result += STEP( 4, 5741 ) ; - L_result += STEP( 5, 8192 ) ; - L_result += STEP( 6, 5741 ) ; - L_result += STEP( 7, 2054 ) ; - /* + STEP( 8, 0 ) */ - L_result += STEP( 9, -374 ) ; - L_result += STEP( 10, -134 ) ; -#else - L_result += - STEP( 0, -134 ) - + STEP( 1, -374 ) - /* + STEP( 2, 0 ) */ - + STEP( 3, 2054 ) - + STEP( 4, 5741 ) - + STEP( 5, 8192 ) - + STEP( 6, 5741 ) - + STEP( 7, 2054 ) - /* + STEP( 8, 0 ) */ - + STEP( 9, -374 ) - + STEP(10, -134 ) - ; -#endif - - /* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *) - * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *) - * - * x[k] = SASR( L_result, 16 ); - */ - - /* 2 adds vs. >>16 => 14, minus one shift to compensate for - * those we lost when replacing L_MULT by '*'. - */ - - L_result = SASR( L_result, 13 ); - x[k] = ( L_result < MIN_WORD ? MIN_WORD - : (L_result > MAX_WORD ? MAX_WORD : L_result )); - } -} - -/* 4.2.14 */ - -static void RPE_grid_selection P3((x,xM,Mc_out), - word * x, /* [0..39] IN */ - word * xM, /* [0..12] OUT */ - word * Mc_out /* OUT */ -) -/* - * The signal x[0..39] is used to select the RPE grid which is - * represented by Mc. - */ -{ - /* register word temp1; */ - register int /* m, */ i; - register longword L_result, L_temp; - longword EM; /* xxx should be L_EM? */ - word Mc; - - longword L_common_0_3; - - EM = 0; - Mc = 0; - - /* for (m = 0; m <= 3; m++) { - * L_result = 0; - * - * - * for (i = 0; i <= 12; i++) { - * - * temp1 = SASR( x[m + 3*i], 2 ); - * - * _x_assert(temp1 != MIN_WORD); - * - * L_temp = GSM_L_MULT( temp1, temp1 ); - * L_result = GSM_L_ADD( L_temp, L_result ); - * } - * - * if (L_result > EM) { - * Mc = m; - * EM = L_result; - * } - * } - */ - -#undef STEP -#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \ - L_result += L_temp * L_temp; - - /* common part of 0 and 3 */ - - L_result = 0; - STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 ); - STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 ); - STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12); - L_common_0_3 = L_result; - - /* i = 0 */ - - STEP( 0, 0 ); - L_result <<= 1; /* implicit in L_MULT */ - EM = L_result; - - /* i = 1 */ - - L_result = 0; - STEP( 1, 0 ); - STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 ); - STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 ); - STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12); - L_result <<= 1; - if (L_result > EM) { - Mc = 1; - EM = L_result; - } - - /* i = 2 */ - - L_result = 0; - STEP( 2, 0 ); - STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 ); - STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 ); - STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12); - L_result <<= 1; - if (L_result > EM) { - Mc = 2; - EM = L_result; - } - - /* i = 3 */ - - L_result = L_common_0_3; - STEP( 3, 12 ); - L_result <<= 1; - if (L_result > EM) { - Mc = 3; - EM = L_result; - } - - /**/ - - /* Down-sampling by a factor 3 to get the selected xM[0..12] - * RPE sequence. - */ - for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i]; - *Mc_out = Mc; -} - -/* 4.12.15 */ - -static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out), - word xmaxc, /* IN */ - word * exp_out, /* OUT */ - word * mant_out ) /* OUT */ -{ - word exp, mant; - - /* Compute exponent and mantissa of the decoded version of xmaxc - */ - - exp = 0; - if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1; - mant = xmaxc - (exp << 3); - - if (mant == 0) { - exp = -4; - mant = 7; - } - else { - while (mant <= 7) { - mant = mant << 1 | 1; - exp--; - } - mant -= 8; - } - - _x_assert( exp >= -4 && exp <= 6 ); - _x_assert( mant >= 0 && mant <= 7 ); - - *exp_out = exp; - *mant_out = mant; -} - -static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out), - word * xM, /* [0..12] IN */ - - word * xMc, /* [0..12] OUT */ - word * mant_out, /* OUT */ - word * exp_out, /* OUT */ - word * xmaxc_out /* OUT */ -) -{ - int i, itest; - - word xmax, xmaxc, temp, temp1, temp2; - word exp, mant; - - - /* Find the maximum absolute value xmax of xM[0..12]. - */ - - xmax = 0; - for (i = 0; i <= 12; i++) { - temp = xM[i]; - temp = GSM_ABS(temp); - if (temp > xmax) xmax = temp; - } - - /* Qantizing and coding of xmax to get xmaxc. - */ - - exp = 0; - temp = SASR( xmax, 9 ); - itest = 0; - - for (i = 0; i <= 5; i++) { - - itest |= (temp <= 0); - temp = SASR( temp, 1 ); - - _x_assert(exp <= 5); - if (itest == 0) exp++; /* exp = add (exp, 1) */ - } - - _x_assert(exp <= 6 && exp >= 0); - temp = exp + 5; - - _x_assert(temp <= 11 && temp >= 0); - xmaxc = gsm_add( SASR(xmax, temp), exp << 3 ); - - /* Quantizing and coding of the xM[0..12] RPE sequence - * to get the xMc[0..12] - */ - - APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant ); - - /* This computation uses the fact that the decoded version of xmaxc - * can be calculated by using the exponent and the mantissa part of - * xmaxc (logarithmic table). - * So, this method avoids any division and uses only a scaling - * of the RPE samples by a function of the exponent. A direct - * multiplication by the inverse of the mantissa (NRFAC[0..7] - * found in table 4.5) gives the 3 bit coded version xMc[0..12] - * of the RPE samples. - */ - - - /* Direct computation of xMc[0..12] using table 4.5 - */ - - _x_assert((exp <= 4096) && (exp >= -4096)); - _x_assert((mant >= 0) && (mant <= 7)); - - temp1 = 6 - exp; /* normalization by the exponent */ - temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */ - - for (i = 0; i <= 12; i++) { - - _x_assert(temp1 >= 0 && temp1 < 16); - - temp = xM[i] << temp1; - temp = GSM_MULT( temp, temp2 ); - temp = SASR(temp, 12); - xMc[i] = temp + 4; /* see note below */ - } - - /* NOTE: This equation is used to make all the xMc[i] positive. - */ - - *mant_out = mant; - *exp_out = exp; - *xmaxc_out = xmaxc; -} - -/* 4.2.16 */ - -static void APCM_inverse_quantization P4((xMc,mant,exp,xMp), - register word * xMc, /* [0..12] IN */ - word mant, - word exp, - register word * xMp) /* [0..12] OUT */ -/* - * This part is for decoding the RPE sequence of coded xMc[0..12] - * samples to obtain the xMp[0..12] array. Table 4.6 is used to get - * the mantissa of xmaxc (FAC[0..7]). - */ -{ - int i; - word temp, temp1, temp2, temp3; - longword ltmp; - - _x_assert((mant >= 0) && (mant <= 7)); - - temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */ - temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */ - temp3 = gsm_asl( 1, gsm_sub( temp2, 1 )); - - for (i = 13; i--;) { - _x_assert((mant >= 0) && (mant <= 7)); - - _x_assert((*xMc <= 7) && (*xMc >= 0)); /* 3 bit unsigned */ - - /* temp = gsm_sub( *xMc++ << 1, 7 ); */ - temp = (*xMc++ << 1) - 7; /* restore sign */ - - _x_assert((temp <= 7) && (temp >= -7)); /* 4 bit signed */ - - temp <<= 12; /* 16 bit signed */ - temp = GSM_MULT_R( temp1, temp ); - temp = GSM_ADD( temp, temp3 ); - *xMp++ = gsm_asr( temp, temp2 ); - } -} - -/* 4.2.17 */ - -static void RPE_grid_positioning P3((Mc,xMp,ep), - word Mc, /* grid position IN */ - register word * xMp, /* [0..12] IN */ - register word * ep /* [0..39] OUT */ -) -/* - * This procedure computes the reconstructed long term residual signal - * ep[0..39] for the LTP analysis filter. The inputs are the Mc - * which is the grid position selection and the xMp[0..12] decoded - * RPE samples which are upsampled by a factor of 3 by inserting zero - * values. - */ -{ - int i = 13; - - _x_assert((0 <= Mc) && (Mc <= 3)); - - switch (Mc) { - case 3: *ep++ = 0; - case 2: do { - *ep++ = 0; - case 1: *ep++ = 0; - case 0: *ep++ = *xMp++; - } while (--i); - } - while (++Mc < 4) *ep++ = 0; - - /* - - int i, k; - for (k = 0; k <= 39; k++) ep[k] = 0; - for (i = 0; i <= 12; i++) { - ep[ Mc + (3*i) ] = xMp[i]; - } - */ -} - -/* 4.2.18 */ - -/* This procedure adds the reconstructed long term residual signal - * ep[0..39] to the estimated signal dpp[0..39] from the long term - * analysis filter to compute the reconstructed short term residual - * signal dp[-40..-1]; also the reconstructed short term residual - * array dp[-120..-41] is updated. - */ - -#if 0 /* Has been inlined in code.c */ -void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp), - word * dpp, /* [0...39] IN */ - word * ep, /* [0...39] IN */ - word * dp) /* [-120...-1] IN/OUT */ -{ - int k; - - for (k = 0; k <= 79; k++) - dp[ -120 + k ] = dp[ -80 + k ]; - - for (k = 0; k <= 39; k++) - dp[ -40 + k ] = gsm_add( ep[k], dpp[k] ); -} -#endif /* Has been inlined in code.c */ - -void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc), - - struct gsm_state * S, - - word * e, /* -5..-1][0..39][40..44 IN/OUT */ - word * xmaxc, /* OUT */ - word * Mc, /* OUT */ - word * xMc) /* [0..12] OUT */ -{ - word x[40]; - word xM[13], xMp[13]; - word mant, exp; - - Weighting_filter(e, x); - RPE_grid_selection(x, xM, Mc); - - APCM_quantization( xM, xMc, &mant, &exp, xmaxc); - APCM_inverse_quantization( xMc, mant, exp, xMp); - - RPE_grid_positioning( *Mc, xMp, e ); - -} - -void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp), - struct gsm_state * S, - - word xmaxcr, - word Mcr, - word * xMcr, /* [0..12], 3 bits IN */ - word * erp /* [0..39] OUT */ -) -{ - word exp, mant; - word xMp[ 13 ]; - - APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant ); - APCM_inverse_quantization( xMcr, mant, exp, xMp ); - RPE_grid_positioning( Mcr, xMp, erp ); - -} diff --git a/src/libxineadec/gsm610/short_term.c b/src/libxineadec/gsm610/short_term.c deleted file mode 100644 index 8222b2caa..000000000 --- a/src/libxineadec/gsm610/short_term.c +++ /dev/null @@ -1,428 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/short_term.c,v 1.3 2003/12/07 15:34:30 f1rmb Exp $ */ - -#include <stdio.h> -#include "xineutils.h" -#include "private.h" - -#include "gsm.h" -#include "proto.h" - -/* - * SHORT TERM ANALYSIS FILTERING SECTION - */ - -/* 4.2.8 */ - -static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp), - word * LARc, /* coded log area ratio [0..7] IN */ - word * LARpp) /* out: decoded .. */ -{ - register word temp1 /* , temp2 */; - register long ltmp; /* for GSM_ADD */ - - /* This procedure requires for efficient implementation - * two tables. - * - * INVA[1..8] = integer( (32768 * 8) / real_A[1..8]) - * MIC[1..8] = minimum value of the LARc[1..8] - */ - - /* Compute the LARpp[1..8] - */ - - /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) { - * - * temp1 = GSM_ADD( *LARc, *MIC ) << 10; - * temp2 = *B << 1; - * temp1 = GSM_SUB( temp1, temp2 ); - * - * _x_assert(*INVA != MIN_WORD); - * - * temp1 = GSM_MULT_R( *INVA, temp1 ); - * *LARpp = GSM_ADD( temp1, temp1 ); - * } - */ - -#undef STEP -#define STEP( B, MIC, INVA ) \ - temp1 = GSM_ADD( *LARc++, MIC ) << 10; \ - temp1 = GSM_SUB( temp1, B << 1 ); \ - temp1 = GSM_MULT_R( INVA, temp1 ); \ - *LARpp++ = GSM_ADD( temp1, temp1 ); - - STEP( 0, -32, 13107 ); - STEP( 0, -32, 13107 ); - STEP( 2048, -16, 13107 ); - STEP( -2560, -16, 13107 ); - - STEP( 94, -8, 19223 ); - STEP( -1792, -8, 17476 ); - STEP( -341, -4, 31454 ); - STEP( -1144, -4, 29708 ); - - /* NOTE: the addition of *MIC is used to restore - * the sign of *LARc. - */ -} - -/* 4.2.9 */ -/* Computation of the quantized reflection coefficients - */ - -/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8] - */ - -/* - * Within each frame of 160 analyzed speech samples the short term - * analysis and synthesis filters operate with four different sets of - * coefficients, derived from the previous set of decoded LARs(LARpp(j-1)) - * and the actual set of decoded LARs (LARpp(j)) - * - * (Initial value: LARpp(j-1)[1..8] = 0.) - */ - -static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp), - register word * LARpp_j_1, - register word * LARpp_j, - register word * LARp) -{ - register int i; - register longword ltmp; - - for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) { - *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 )); - *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1)); - } -} - -static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp), - register word * LARpp_j_1, - register word * LARpp_j, - register word * LARp) -{ - register int i; - register longword ltmp; - for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { - *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 )); - } -} - -static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp), - register word * LARpp_j_1, - register word * LARpp_j, - register word * LARp) -{ - register int i; - register longword ltmp; - - for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { - *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 )); - *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 )); - } -} - - -static void Coefficients_40_159 P2((LARpp_j, LARp), - register word * LARpp_j, - register word * LARp) -{ - register int i; - - for (i = 1; i <= 8; i++, LARp++, LARpp_j++) - *LARp = *LARpp_j; -} - -/* 4.2.9.2 */ - -static void LARp_to_rp P1((LARp), - register word * LARp) /* [0..7] IN/OUT */ -/* - * The input of this procedure is the interpolated LARp[0..7] array. - * The reflection coefficients, rp[i], are used in the analysis - * filter and in the synthesis filter. - */ -{ - register int i; - register word temp; - register longword ltmp; - - for (i = 1; i <= 8; i++, LARp++) { - - /* temp = GSM_ABS( *LARp ); - * - * if (temp < 11059) temp <<= 1; - * else if (temp < 20070) temp += 11059; - * else temp = GSM_ADD( temp >> 2, 26112 ); - * - * *LARp = *LARp < 0 ? -temp : temp; - */ - - if (*LARp < 0) { - temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp); - *LARp = - ((temp < 11059) ? temp << 1 - : ((temp < 20070) ? temp + 11059 - : GSM_ADD( temp >> 2, 26112 ))); - } else { - temp = *LARp; - *LARp = (temp < 11059) ? temp << 1 - : ((temp < 20070) ? temp + 11059 - : GSM_ADD( temp >> 2, 26112 )); - } - } -} - - -/* 4.2.10 */ -static void Short_term_analysis_filtering P4((S,rp,k_n,s), - struct gsm_state * S, - register word * rp, /* [0..7] IN */ - register int k_n, /* k_end - k_start */ - register word * s /* [0..n-1] IN/OUT */ -) -/* - * This procedure computes the short term residual signal d[..] to be fed - * to the RPE-LTP loop from the s[..] signal and from the local rp[..] - * array (quantized reflection coefficients). As the call of this - * procedure can be done in many ways (see the interpolation of the LAR - * coefficient), it is assumed that the computation begins with index - * k_start (for arrays d[..] and s[..]) and stops with index k_end - * (k_start and k_end are defined in 4.2.9.1). This procedure also - * needs to keep the array u[0..7] in memory for each call. - */ -{ - register word * u = S->u; - register int i; - register word di, zzz, ui, sav, rpi; - register longword ltmp; - - for (; k_n--; s++) { - - di = sav = *s; - - for (i = 0; i < 8; i++) { /* YYY */ - - ui = u[i]; - rpi = rp[i]; - u[i] = sav; - - zzz = GSM_MULT_R(rpi, di); - sav = GSM_ADD( ui, zzz); - - zzz = GSM_MULT_R(rpi, ui); - di = GSM_ADD( di, zzz ); - } - - *s = di; - } -} - -#if defined(USE_FLOAT_MUL) && defined(FAST) - -static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s), - struct gsm_state * S, - register word * rp, /* [0..7] IN */ - register int k_n, /* k_end - k_start */ - register word * s /* [0..n-1] IN/OUT */ -) -{ - register word * u = S->u; - register int i; - - float uf[8], - rpf[8]; - - register float scalef = 3.0517578125e-5; - register float sav, di, temp; - - for (i = 0; i < 8; ++i) { - uf[i] = u[i]; - rpf[i] = rp[i] * scalef; - } - for (; k_n--; s++) { - sav = di = *s; - for (i = 0; i < 8; ++i) { - register float rpfi = rpf[i]; - register float ufi = uf[i]; - - uf[i] = sav; - temp = rpfi * di + ufi; - di += rpfi * ufi; - sav = temp; - } - *s = di; - } - for (i = 0; i < 8; ++i) u[i] = uf[i]; -} -#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */ - -static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr), - struct gsm_state * S, - register word * rrp, /* [0..7] IN */ - register int k, /* k_end - k_start */ - register word * wt, /* [0..k-1] IN */ - register word * sr /* [0..k-1] OUT */ -) -{ - register word * v = S->v; - register int i; - register word sri, tmp1, tmp2; - register longword ltmp; /* for GSM_ADD & GSM_SUB */ - - while (k--) { - sri = *wt++; - for (i = 8; i--;) { - - /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) ); - */ - tmp1 = rrp[i]; - tmp2 = v[i]; - tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD - ? MAX_WORD - : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2 - + 16384) >> 15)) ; - - sri = GSM_SUB( sri, tmp2 ); - - /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) ); - */ - tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD - ? MAX_WORD - : 0x0FFFF & (( (longword)tmp1 * (longword)sri - + 16384) >> 15)) ; - - v[i+1] = GSM_ADD( v[i], tmp1); - } - *sr++ = v[0] = sri; - } -} - - -#if defined(FAST) && defined(USE_FLOAT_MUL) - -static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr), - struct gsm_state * S, - register word * rrp, /* [0..7] IN */ - register int k, /* k_end - k_start */ - register word * wt, /* [0..k-1] IN */ - register word * sr /* [0..k-1] OUT */ -) -{ - register word * v = S->v; - register int i; - - float va[9], rrpa[8]; - register float scalef = 3.0517578125e-5, temp; - - for (i = 0; i < 8; ++i) { - va[i] = v[i]; - rrpa[i] = (float)rrp[i] * scalef; - } - while (k--) { - register float sri = *wt++; - for (i = 8; i--;) { - sri -= rrpa[i] * va[i]; - if (sri < -32768.) sri = -32768.; - else if (sri > 32767.) sri = 32767.; - - temp = va[i] + rrpa[i] * sri; - if (temp < -32768.) temp = -32768.; - else if (temp > 32767.) temp = 32767.; - va[i+1] = temp; - } - *sr++ = va[0] = sri; - } - for (i = 0; i < 9; ++i) v[i] = va[i]; -} - -#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */ - -void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s), - - struct gsm_state * S, - - word * LARc, /* coded log area ratio [0..7] IN */ - word * s /* signal [0..159] IN/OUT */ -) -{ - word * LARpp_j = S->LARpp[ S->j ]; - word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ]; - - word LARp[8]; - -#undef FILTER -#if defined(FAST) && defined(USE_FLOAT_MUL) -# define FILTER (* (S->fast \ - ? Fast_Short_term_analysis_filtering \ - : Short_term_analysis_filtering )) - -#else -# define FILTER Short_term_analysis_filtering -#endif - - Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j ); - - Coefficients_0_12( LARpp_j_1, LARpp_j, LARp ); - LARp_to_rp( LARp ); - FILTER( S, LARp, 13, s); - - Coefficients_13_26( LARpp_j_1, LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 14, s + 13); - - Coefficients_27_39( LARpp_j_1, LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 13, s + 27); - - Coefficients_40_159( LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 120, s + 40); -} - -void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s), - struct gsm_state * S, - - word * LARcr, /* received log area ratios [0..7] IN */ - word * wt, /* received d [0..159] IN */ - - word * s /* signal s [0..159] OUT */ -) -{ - word * LARpp_j = S->LARpp[ S->j ]; - word * LARpp_j_1 = S->LARpp[ S->j ^=1 ]; - - word LARp[8]; - -#undef FILTER -#if defined(FAST) && defined(USE_FLOAT_MUL) - -# define FILTER (* (S->fast \ - ? Fast_Short_term_synthesis_filtering \ - : Short_term_synthesis_filtering )) -#else -# define FILTER Short_term_synthesis_filtering -#endif - - Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j ); - - Coefficients_0_12( LARpp_j_1, LARpp_j, LARp ); - LARp_to_rp( LARp ); - FILTER( S, LARp, 13, wt, s ); - - Coefficients_13_26( LARpp_j_1, LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 14, wt + 13, s + 13 ); - - Coefficients_27_39( LARpp_j_1, LARpp_j, LARp); - LARp_to_rp( LARp ); - FILTER( S, LARp, 13, wt + 27, s + 27 ); - - Coefficients_40_159( LARpp_j, LARp ); - LARp_to_rp( LARp ); - FILTER(S, LARp, 120, wt + 40, s + 40); -} diff --git a/src/libxineadec/gsm610/table.c b/src/libxineadec/gsm610/table.c deleted file mode 100644 index 797685c07..000000000 --- a/src/libxineadec/gsm610/table.c +++ /dev/null @@ -1,63 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/* $Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/table.c,v 1.1 2002/10/12 19:12:49 tmmm Exp $ */ - -/* Most of these tables are inlined at their point of use. - */ - -/* 4.4 TABLES USED IN THE FIXED POINT IMPLEMENTATION OF THE RPE-LTP - * CODER AND DECODER - * - * (Most of them inlined, so watch out.) - */ - -#define GSM_TABLE_C -#include "private.h" -#include "gsm.h" - -/* Table 4.1 Quantization of the Log.-Area Ratios - */ -/* i 1 2 3 4 5 6 7 8 */ -word gsm_A[8] = {20480, 20480, 20480, 20480, 13964, 15360, 8534, 9036}; -word gsm_B[8] = { 0, 0, 2048, -2560, 94, -1792, -341, -1144}; -word gsm_MIC[8] = { -32, -32, -16, -16, -8, -8, -4, -4 }; -word gsm_MAC[8] = { 31, 31, 15, 15, 7, 7, 3, 3 }; - - -/* Table 4.2 Tabulation of 1/A[1..8] - */ -word gsm_INVA[8]={ 13107, 13107, 13107, 13107, 19223, 17476, 31454, 29708 }; - - -/* Table 4.3a Decision level of the LTP gain quantizer - */ -/* bc 0 1 2 3 */ -word gsm_DLB[4] = { 6554, 16384, 26214, 32767 }; - - -/* Table 4.3b Quantization levels of the LTP gain quantizer - */ -/* bc 0 1 2 3 */ -word gsm_QLB[4] = { 3277, 11469, 21299, 32767 }; - - -/* Table 4.4 Coefficients of the weighting filter - */ -/* i 0 1 2 3 4 5 6 7 8 9 10 */ -word gsm_H[11] = {-134, -374, 0, 2054, 5741, 8192, 5741, 2054, 0, -374, -134 }; - - -/* Table 4.5 Normalized inverse mantissa used to compute xM/xmax - */ -/* i 0 1 2 3 4 5 6 7 */ -word gsm_NRFAC[8] = { 29128, 26215, 23832, 21846, 20165, 18725, 17476, 16384 }; - - -/* Table 4.6 Normalized direct mantissa used to compute xM/xmax - */ -/* i 0 1 2 3 4 5 6 7 */ -word gsm_FAC[8] = { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 }; diff --git a/src/libxineadec/gsm610/unproto.h b/src/libxineadec/gsm610/unproto.h deleted file mode 100644 index f49530c22..000000000 --- a/src/libxineadec/gsm610/unproto.h +++ /dev/null @@ -1,23 +0,0 @@ -/* - * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische - * Universitaet Berlin. See the accompanying file "COPYRIGHT" for - * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. - */ - -/*$Header: /nfshome/cvs/xine-lib/src/libxineadec/gsm610/unproto.h,v 1.1 2002/10/12 19:12:49 tmmm Exp $*/ - -#ifdef PROTO_H /* sic */ -#undef PROTO_H - -#undef P -#undef P0 -#undef P1 -#undef P2 -#undef P3 -#undef P4 -#undef P5 -#undef P6 -#undef P7 -#undef P8 - -#endif /* PROTO_H */ |