/* Driver for VIA CLE266 Unichrome - Version 0.1.0 Copyright (C) 2004 by Timothy Lee Based on Cyberblade/i driver by Alastair M. Robison. Thanks to Gilles Frattini for bugfixes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Changes: 2004-03-10 Initial version To Do: */ #include #include #include #include #include #include #include "vidix.h" #include "fourcc.h" #include "libdha.h" #include "pci_ids.h" #include "pci_names.h" #include "unichrome_regs.h" pciinfo_t pci_info; uint8_t *uc_mem; static vidix_grkey_t uc_grkey; static int frames[VID_PLAY_MAXFRAMES]; uint8_t *vio; uint8_t mclk_save[3]; #define VIA_OUT(hwregs, reg, val) *(volatile uint32_t *)((hwregs) + (reg)) = (val) #define VIA_IN(hwregs, reg) *(volatile uint32_t *)((hwregs) + (reg)) #define VGA_OUT8(hwregs, reg, val) *(volatile uint8_t *)((hwregs) + (reg) + 0x8000) = (val) #define VGA_IN8(hwregs, reg) *(volatile uint8_t *)((hwregs) + (reg) + 0x8000) #define VIDEO_OUT(hwregs, reg, val) VIA_OUT((hwregs)+0x200, reg, val) #define VIDEO_IN(hwregs, reg) VIA_IN((hwregs)+0x200, reg) #define outb(val,reg) OUTPORT8(reg,val) #define inb(reg) INPORT8(reg) #define ALIGN_TO(v, n) (((v) + (n-1)) & ~(n-1)) #define UC_MAP_V1_FIFO_CONTROL(depth, pre_thr, thr) \ (((depth)-1) | ((thr) << 8) | ((pre_thr) << 24)) #define FRAMEBUFFER_START 0x600000 #define FRAMEBUFFER_SIZE 0x200000 #ifdef DEBUG_LOGFILE FILE *logfile=0; #define LOGWRITE(x) {if(logfile) fprintf(logfile,x);} #else #define LOGWRITE(x) #endif static vidix_capability_t uc_cap = { "VIA CLE266 Unichrome driver", "Timothy Lee ", TYPE_OUTPUT, { 0, 0, 0, 0 }, 4096, 4096, 4, 4, -1, FLAG_UPSCALER|FLAG_DOWNSCALER, VENDOR_VIA2, -1, { 0, 0, 0, 0 } }; unsigned int vixGetVersion(void) { return(VIDIX_VERSION); } static unsigned short uc_card_ids[] = { DEVICE_VIA2_VT8623_APOLLO_CLE266 }; static int find_chip(unsigned chip_id) { unsigned i; for(i = 0;i < sizeof(uc_card_ids)/sizeof(unsigned short);i++) { if(chip_id == uc_card_ids[i]) return i; } return -1; } /** * Map hw settings for vertical scaling. * * @param sh source height * @param dh destination height * @param zoom will hold vertical setting of zoom register. * @param mini will hold vertical setting of mini register. * * @returns 1 if successful. * 0 if the zooming factor is too large or small. * * @note Derived from VIA's V4L driver. * See ddover.c, DDOVER_HQVCalcZoomHeight() */ static int uc_ovl_map_vzoom(int sh, int dh, uint32_t* zoom, uint32_t* mini) { uint32_t sh1, tmp, d; int zoom_ok = 1; if (sh == dh) { // No zoom // Do nothing } else if (sh < dh) { // Zoom in tmp = (sh * 0x0400) / dh; zoom_ok = !(tmp > 0x3ff); *zoom |= (tmp & 0x3ff) | V1_Y_ZOOM_ENABLE; *mini |= V1_Y_INTERPOLY | V1_YCBCR_INTERPOLY; } else { // sw > dh - Zoom out // Find a suitable divider (1 << d) = {2, 4, 8 or 16} sh1 = sh; for (d = 1; d < 5; d++) { sh1 >>= 1; if (sh1 <= dh) break; } if (d == 5) { // Too small. d = 4; zoom_ok = 0; } *mini |= ((d<<1)-1) << 16; // <= {1,3,5,7} << 16 // Add scaling if (sh1 < dh) { tmp = (sh1 * 0x400) / dh; *zoom |= ((tmp & 0x3ff) | V1_Y_ZOOM_ENABLE); *mini |= V1_Y_INTERPOLY | V1_YCBCR_INTERPOLY; } } return zoom_ok; } /** * Map hw settings for horizontal scaling. * * @param sw source width * @param dw destination width * * @param zoom will hold horizontal setting of zoom register. * @param mini will hold horizontal setting of mini register. * @param falign will hold fetch aligment * @param dcount will hold display count * * @returns 1 if successful. * 0 if the zooming factor is too large or small. * * @note Derived from VIA's V4L driver. * See ddover.c, DDOVER_HQVCalcZoomWidth() and DDOver_GetDisplayCount() */ static int uc_ovl_map_hzoom(int sw, int dw, uint32_t* zoom, uint32_t* mini, int* falign, int* dcount) { uint32_t tmp, sw1, d; int md; // Minify-divider int zoom_ok = 1; md = 1; *falign = 0; if (sw == dw) { // No zoom // Do nothing } else if (sw < dw) { // Zoom in tmp = (sw * 0x0800) / dw; zoom_ok = !(tmp > 0x7ff); *zoom |= ((tmp & 0x7ff) << 16) | V1_X_ZOOM_ENABLE; *mini |= V1_X_INTERPOLY; } else { // sw > dw - Zoom out // Find a suitable divider (1 << d) = {2, 4, 8 or 16} sw1 = sw; for (d = 1; d < 5; d++) { sw1 >>= 1; if (sw1 <= dw) break; } if (d == 5) { // Too small. d = 4; zoom_ok = 0; } md = 1 << d; // <= {2,4,8,16} *falign = ((md<<1)-1) & 0xf; // <= {3,7,15,15} *mini |= V1_X_INTERPOLY; *mini |= ((d<<1)-1) << 24; // <= {1,3,5,7} << 24 // Add scaling if (sw1 < dw) { //CLE bug //tmp = sw1*0x0800 / dw; tmp = (sw1 - 2) * 0x0800 / dw; *zoom |= ((tmp & 0x7ff) << 16) | V1_X_ZOOM_ENABLE; } } *dcount = sw - md; return zoom_ok; } /** * @param format overlay pixel format * @param sw source width * * @returns qword fetch register setting * * @note Derived from VIA's V4L driver. See ddover.c, DDOver_GetFetch() * @note Only call after uc_ovl_map_hzoom() */ static uint32_t uc_ovl_map_qwfetch(uint32_t format, int sw) { uint32_t fetch = 0; switch (format) { case IMGFMT_YV12: case IMGFMT_I420: fetch = ALIGN_TO(sw, 32) >> 4; break; case IMGFMT_UYVY: case IMGFMT_YVYU: case IMGFMT_YUY2: fetch = (ALIGN_TO(sw << 1, 16) >> 4) + 1; break; case IMGFMT_BGR15: case IMGFMT_BGR16: fetch = (ALIGN_TO(sw << 1, 16) >> 4) + 1; break; case IMGFMT_BGR32: fetch = (ALIGN_TO(sw << 2, 16) >> 4) + 1; break; default: printf("[unichrome] Unexpected pixelformat!"); break; } if (fetch < 4) fetch = 4; return fetch; } /** * Map pixel format. * * @note Derived from VIA's V4L driver. See ddover.c, DDOver_GetV1Format() */ static uint32_t uc_ovl_map_format(uint32_t format) { switch (format) { case IMGFMT_UYVY: case IMGFMT_YVYU: case IMGFMT_YUY2: return V1_COLORSPACE_SIGN | V1_YUV422; case IMGFMT_IYUV: return V1_COLORSPACE_SIGN | V1_YCbCr420 | V1_SWAP_SW; case IMGFMT_YV12: case IMGFMT_I420: return V1_COLORSPACE_SIGN | V1_YCbCr420; case IMGFMT_BGR15: return V1_RGB15; case IMGFMT_BGR16: return V1_RGB16; case IMGFMT_BGR32: return V1_RGB32; default : printf("[unichrome] Unexpected pixelformat!"); return V1_YUV422; } } /** * Calculate V1 control and fifo-control register values * @param format pixel format * @param sw source width * @param hwrev CLE266 hardware revision * @param extfifo_on set this 1 if the extended FIFO is enabled * @param control will hold value for V1_CONTROL * @param fifo will hold value for V1_FIFO_CONTROL */ static void uc_ovl_map_v1_control(uint32_t format, int sw, int hwrev, int extfifo_on, uint32_t* control, uint32_t* fifo) { *control = V1_BOB_ENABLE | uc_ovl_map_format(format); if (hwrev == 0x10) { *control |= V1_EXPIRE_NUM_F; } else { if (extfifo_on) { *control |= V1_EXPIRE_NUM_A | V1_FIFO_EXTENDED; } else { *control |= V1_EXPIRE_NUM; } } if ((format == IMGFMT_YV12) || (format == IMGFMT_I420)) { //Minified video will be skewed without this workaround. if (sw <= 80) { //Fetch count <= 5 *fifo = UC_MAP_V1_FIFO_CONTROL(16,0,0); } else { if (hwrev == 0x10) *fifo = UC_MAP_V1_FIFO_CONTROL(64,56,56); else *fifo = UC_MAP_V1_FIFO_CONTROL(16,12,8); } } else { if (hwrev == 0x10) { *fifo = UC_MAP_V1_FIFO_CONTROL(64,56,56); // Default rev 0x10 } else { if (extfifo_on) *fifo = UC_MAP_V1_FIFO_CONTROL(48,40,40); else *fifo = UC_MAP_V1_FIFO_CONTROL(32,29,16); // Default } } } static void uc_ovl_setup_fifo(int *extfifo_on, int dst_w) { if (dst_w <= 1024) { // Disable extended FIFO outb(0x16, 0x3c4); outb(mclk_save[0], 0x3c5); outb(0x17, 0x3c4); outb(mclk_save[1], 0x3c5); outb(0x18, 0x3c4); outb(mclk_save[2], 0x3c5); *extfifo_on = 0; } else { // Enable extended FIFO outb(0x17, 0x3c4); outb(0x2f, 0x3c5); outb(0x16, 0x3c4); outb((mclk_save[0] & 0xf0) | 0x14, 0x3c5); outb(0x18, 0x3c4); outb(0x56, 0x3c5); *extfifo_on = 1; } } static void uc_ovl_vcmd_wait(volatile uint8_t* vio) { while ((VIDEO_IN(vio, V_COMPOSE_MODE) & (V1_COMMAND_FIRE | V3_COMMAND_FIRE))); } int vixProbe(int verbose, int force) { pciinfo_t lst[MAX_PCI_DEVICES]; unsigned i,num_pci; int err; err = pci_scan(lst,&num_pci); if(err) { printf("[unichrome] Error occurred during pci scan: %s\n",strerror(err)); return err; } else { err = ENXIO; for(i=0; i < num_pci; i++) { if(lst[i].vendor == VENDOR_VIA2) { int idx; const char *dname; idx = find_chip(lst[i].device); if(idx == -1) continue; dname = pci_device_name(VENDOR_VIA2, lst[i].device); dname = dname ? dname : "Unknown chip"; printf("[unichrome] Found chip: %s\n", dname); uc_cap.device_id = lst[i].device; err = 0; memcpy(&pci_info, &lst[i], sizeof(pciinfo_t)); break; } } } if(err && verbose) printf("[unichrome] Can't find chip\n"); return err; } int vixInit(const char *args) { long tmp; uc_mem = map_phys_mem(pci_info.base0, 0x800000); enable_app_io(); outb(0x2f, 0x3c4); tmp = inb(0x3c5) << 0x18; vio = map_phys_mem(tmp,0x1000); outb(0x16, 0x3c4); mclk_save[0] = inb(0x3c5); outb(0x17, 0x3c4); mclk_save[1] = inb(0x3c5); outb(0x18, 0x3c4); mclk_save[2] = inb(0x3c5); uc_grkey.ckey.blue = 0x00; uc_grkey.ckey.green = 0x00; uc_grkey.ckey.red = 0x00; #ifdef DEBUG_LOGFILE logfile=fopen("/tmp/uc_vidix.log","w"); #endif return 0; } void vixDestroy(void) { #ifdef DEBUG_LOGFILE if(logfile) fclose(logfile); #endif outb(0x16, 0x3c4); outb(mclk_save[0], 0x3c5); outb(0x17, 0x3c4); outb(mclk_save[1], 0x3c5); outb(0x18, 0x3c4); outb(mclk_save[2], 0x3c5); disable_app_io(); unmap_phys_mem(uc_mem, 0x800000); unmap_phys_mem(vio, 0x1000); } int vixGetCapability(vidix_capability_t *to) { memcpy(to, &uc_cap, sizeof(vidix_capability_t)); return 0; } static int is_supported_fourcc(uint32_t fourcc) { switch(fourcc) { case IMGFMT_YV12: case IMGFMT_I420: case IMGFMT_UYVY: case IMGFMT_YVYU: case IMGFMT_YUY2: case IMGFMT_BGR15: case IMGFMT_BGR16: case IMGFMT_BGR32: return 1; default: return 0; } } int vixQueryFourcc(vidix_fourcc_t *to) { if(is_supported_fourcc(to->fourcc)) { to->depth = VID_DEPTH_1BPP | VID_DEPTH_2BPP | VID_DEPTH_4BPP | VID_DEPTH_8BPP | VID_DEPTH_12BPP| VID_DEPTH_15BPP| VID_DEPTH_16BPP| VID_DEPTH_24BPP| VID_DEPTH_32BPP; to->flags = VID_CAP_EXPAND | VID_CAP_SHRINK | VID_CAP_COLORKEY; return 0; } else to->depth = to->flags = 0; return ENOSYS; } int vixGetGrKeys(vidix_grkey_t *grkey) { memcpy(grkey, &uc_grkey, sizeof(vidix_grkey_t)); return(0); } int vixSetGrKeys(const vidix_grkey_t *grkey) { unsigned long dwCompose = VIDEO_IN(vio, V_COMPOSE_MODE) & ~0x0f; memcpy(&uc_grkey, grkey, sizeof(vidix_grkey_t)); if (uc_grkey.ckey.op != CKEY_FALSE) { // Set colorkey // (how do I detect BPP in hardware??) unsigned long ckey; if (1) // Assume 16-bit graphics { ckey = (grkey->ckey.blue & 0x1f) | ((grkey->ckey.green & 0x3f) << 5) | ((grkey->ckey.red & 0x1f) << 11); } else { ckey = (grkey->ckey.blue) | (grkey->ckey.green << 8) | (grkey->ckey.red << 16); } VIDEO_OUT(vio, V_COLOR_KEY, ckey); dwCompose |= SELECT_VIDEO_IF_COLOR_KEY; } // Execute the changes VIDEO_OUT(vio, V_COMPOSE_MODE, dwCompose | V1_COMMAND_FIRE); return(0); } vidix_video_eq_t equal = { VEQ_CAP_BRIGHTNESS | VEQ_CAP_SATURATION | VEQ_CAP_HUE, 300, 100, 0, 0, 0, 0, 0, 0 }; int vixPlaybackGetEq( vidix_video_eq_t * eq) { memcpy(eq,&equal,sizeof(vidix_video_eq_t)); return 0; } int vixPlaybackSetEq( const vidix_video_eq_t * eq) { return 0; } static int YOffs,UOffs,VOffs; int vixConfigPlayback(vidix_playback_t *info) { int src_w, drw_w; int src_h, drw_h; long base0, pitch; int uv_size, swap_uv; unsigned int i; int extfifo_on; // Overlay register settings uint32_t win_start, win_end; uint32_t zoom, mini; uint32_t dcount, falign, qwfetch; uint32_t v_ctrl, fifo_ctrl; if(!is_supported_fourcc(info->fourcc)) return -1; src_w = info->src.w; src_h = info->src.h; drw_w = info->dest.w; drw_h = info->dest.h; // Setup FIFO uc_ovl_setup_fifo(&extfifo_on, src_w); // Get image format, FIFO size, etc. uc_ovl_map_v1_control(info->fourcc, src_w, 3, extfifo_on, &v_ctrl, &fifo_ctrl); // Setup layer window win_start = (info->dest.x << 16) | info->dest.y; win_end = ((info->dest.x + drw_w - 1) << 16) | (info->dest.y + drw_h - 1); // Get scaling and data-fetch parameters zoom = 0; mini = 0; uc_ovl_map_vzoom(src_h, drw_h, &zoom, &mini); uc_ovl_map_hzoom(src_w, drw_w, &zoom, &mini, &falign, &dcount); qwfetch = uc_ovl_map_qwfetch(info->fourcc, src_w); // Calculate buffer sizes swap_uv = 0; switch(info->fourcc) { default: case IMGFMT_YV12: swap_uv = 1; case IMGFMT_I420: case IMGFMT_UYVY: case IMGFMT_YVYU: pitch = ALIGN_TO (src_w, 32); uv_size = (pitch >> 1) * (src_h >> 1); break; case IMGFMT_YUY2: case IMGFMT_BGR15: case IMGFMT_BGR16: pitch = ALIGN_TO (src_w << 1, 32); uv_size = 0; break; case IMGFMT_BGR32: pitch = ALIGN_TO (src_w << 2, 32); uv_size = 0; break; } if ((src_w > 4096) || (src_h > 4096) || (src_w < 32) || (src_h < 1) || (pitch > 0x1fff)) { printf("[unichrome] Layer size out of bounds\n"); } // Calculate offsets info->offset.y = 0; info->offset.v = info->offset.y + pitch * src_h; info->offset.u = info->offset.v + uv_size; info->frame_size = info->offset.u + uv_size; YOffs = info->offset.y; UOffs = (swap_uv ? info->offset.v : info->offset.u); VOffs = (swap_uv ? info->offset.u : info->offset.v); /* Assume we have 2 MB to play with */ info->num_frames = FRAMEBUFFER_SIZE / info->frame_size; if(info->num_frames > VID_PLAY_MAXFRAMES) info->num_frames = VID_PLAY_MAXFRAMES; /* Start at 6 MB. Let's hope it's not in use. */ base0 = FRAMEBUFFER_START; info->dga_addr = uc_mem + base0; info->dest.pitch.y = 32; info->dest.pitch.u = 32; info->dest.pitch.v = 32; for(i = 0; i < info->num_frames; i++) { info->offsets[i] = info->frame_size * i; frames[i] = base0+info->offsets[i]; } // Write to the hardware uc_ovl_vcmd_wait(vio); // Configure diy_pitchlay parameters now if (v_ctrl & V1_COLORSPACE_SIGN) { VIDEO_OUT (vio, V1_ColorSpaceReg_2, ColorSpaceValue_2); VIDEO_OUT (vio, V1_ColorSpaceReg_1, ColorSpaceValue_1); } VIDEO_OUT(vio, V1_CONTROL, v_ctrl); VIDEO_OUT(vio, V_FIFO_CONTROL, fifo_ctrl); VIDEO_OUT(vio, V1_WIN_START_Y, win_start); VIDEO_OUT(vio, V1_WIN_END_Y, win_end); VIDEO_OUT(vio, V1_SOURCE_HEIGHT, (src_h << 16) | dcount); VIDEO_OUT(vio, V12_QWORD_PER_LINE, qwfetch << 20); VIDEO_OUT(vio, V1_STRIDE, pitch | ((pitch >> 1) << 16)); VIDEO_OUT(vio, V1_MINI_CONTROL, mini); VIDEO_OUT(vio, V1_ZOOM_CONTROL, zoom); // Configure buffer address and execute the changes now! vixPlaybackFrameSelect(0); return 0; } int vixPlaybackOn(void) { LOGWRITE("Enable overlay\n"); // Turn on overlay VIDEO_OUT(vio, V1_CONTROL, VIDEO_IN(vio, V1_CONTROL) | V1_ENABLE); // Execute the changes VIDEO_OUT(vio, V_COMPOSE_MODE, VIDEO_IN(vio, V_COMPOSE_MODE) | V1_COMMAND_FIRE); return 0; } int vixPlaybackOff(void) { LOGWRITE("Disable overlay\n"); uc_ovl_vcmd_wait(vio); // Restore FIFO VIDEO_OUT(vio, V_FIFO_CONTROL, UC_MAP_V1_FIFO_CONTROL(16,12,8)); // Turn off overlay VIDEO_OUT(vio, V1_CONTROL, VIDEO_IN(vio, V1_CONTROL) & ~V1_ENABLE); // Execute the changes VIDEO_OUT(vio, V_COMPOSE_MODE, VIDEO_IN(vio, V_COMPOSE_MODE) | V1_COMMAND_FIRE); return 0; } int vixPlaybackFrameSelect(unsigned int frame) { LOGWRITE("Frame select\n"); uc_ovl_vcmd_wait(vio); // Configure buffer address VIDEO_OUT(vio, V1_STARTADDR_Y0, frames[frame]+YOffs); VIDEO_OUT(vio, V1_STARTADDR_CB0, frames[frame]+UOffs); VIDEO_OUT(vio, V1_STARTADDR_CR0, frames[frame]+VOffs); // Execute the changes VIDEO_OUT(vio, V_COMPOSE_MODE, VIDEO_IN(vio, V_COMPOSE_MODE) | V1_COMMAND_FIRE); return 0; }