/* * slice_xvmc.c * Copyright (C) 2000-2002 Michel Lespinasse * Copyright (C) 1999-2000 Aaron Holtzman * * This file is part of mpeg2dec, a free MPEG-2 video stream decoder. * See http://libmpeg2.sourceforge.net/ for updates. * * mpeg2dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * mpeg2dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include /* memcpy/memset, try to remove */ #include #include #include "xine_internal.h" #include "video_out.h" #include "mpeg2_internal.h" #include "xineutils.h" #include "attributes.h" #include "accel_xvmc.h" #include "xvmc.h" #define MOTION_ACCEL XINE_VO_MOTION_ACCEL #define IDCT_ACCEL XINE_VO_IDCT_ACCEL #define SIGNED_INTRA XINE_VO_SIGNED_INTRA #define ACCEL (MOTION_ACCEL | IDCT_ACCEL) #include "vlc.h" /* original (non-patched) scan tables */ static const uint8_t mpeg2_scan_norm_orig[64] ATTR_ALIGN(16) = { /* Zig-Zag scan pattern */ 0, 1, 8,16, 9, 2, 3,10, 17,24,32,25,18,11, 4, 5, 12,19,26,33,40,48,41,34, 27,20,13, 6, 7,14,21,28, 35,42,49,56,57,50,43,36, 29,22,15,23,30,37,44,51, 58,59,52,45,38,31,39,46, 53,60,61,54,47,55,62,63 }; static const uint8_t mpeg2_scan_alt_orig[64] ATTR_ALIGN(16) = { /* Alternate scan pattern */ 0,8,16,24,1,9,2,10,17,25,32,40,48,56,57,49, 41,33,26,18,3,11,4,12,19,27,34,42,50,58,35,43, 51,59,20,28,5,13,6,14,21,29,36,44,52,60,37,45, 53,61,22,30,7,15,23,31,38,46,54,62,39,47,55,63 }; static uint8_t mpeg2_scan_alt_ptable[64] ATTR_ALIGN(16); static uint8_t mpeg2_scan_norm_ptable[64] ATTR_ALIGN(16); static uint8_t mpeg2_scan_orig_ptable[64] ATTR_ALIGN(16); void xvmc_setup_scan_ptable( void ) { int i; for (i=0; i<64; ++i) { mpeg2_scan_norm_ptable[mpeg2_scan_norm_orig[i]] = mpeg2_scan_norm[i]; mpeg2_scan_alt_ptable[mpeg2_scan_alt_orig[i]] = mpeg2_scan_alt[i]; mpeg2_scan_orig_ptable[i] = i; } } static const int non_linear_quantizer_scale [] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72, 80, 88, 96, 104, 112 }; static inline int get_xvmc_macroblock_modes (picture_t * picture) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int macroblock_modes; const MBtab * tab; switch (picture->picture_coding_type) { case I_TYPE: tab = MB_I + UBITS (bit_buf, 1); DUMPBITS (bit_buf, bits, tab->len); macroblock_modes = tab->modes; if ((! (picture->frame_pred_frame_dct)) && (picture->picture_structure == FRAME_PICTURE)) { macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED; DUMPBITS (bit_buf, bits, 1); } return macroblock_modes; case P_TYPE: tab = MB_P + UBITS (bit_buf, 5); DUMPBITS (bit_buf, bits, tab->len); macroblock_modes = tab->modes; if (picture->picture_structure != FRAME_PICTURE) { if (macroblock_modes & MACROBLOCK_MOTION_FORWARD) { macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE; DUMPBITS (bit_buf, bits, 2); } return macroblock_modes; } else if (picture->frame_pred_frame_dct) { if (macroblock_modes & MACROBLOCK_MOTION_FORWARD) macroblock_modes |= MC_FRAME; return macroblock_modes; } else { if (macroblock_modes & MACROBLOCK_MOTION_FORWARD) { macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE; DUMPBITS (bit_buf, bits, 2); } if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN)) { macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED; DUMPBITS (bit_buf, bits, 1); } return macroblock_modes; } case B_TYPE: tab = MB_B + UBITS (bit_buf, 6); DUMPBITS (bit_buf, bits, tab->len); macroblock_modes = tab->modes; if (picture->picture_structure != FRAME_PICTURE) { if (! (macroblock_modes & MACROBLOCK_INTRA)) { macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE; DUMPBITS (bit_buf, bits, 2); } return macroblock_modes; } else if (picture->frame_pred_frame_dct) { /* if (! (macroblock_modes & MACROBLOCK_INTRA)) */ macroblock_modes |= MC_FRAME; return macroblock_modes; } else { if (macroblock_modes & MACROBLOCK_INTRA) goto intra; macroblock_modes |= UBITS (bit_buf, 2) * MOTION_TYPE_BASE; DUMPBITS (bit_buf, bits, 2); if (macroblock_modes & (MACROBLOCK_INTRA | MACROBLOCK_PATTERN)) { intra: macroblock_modes |= UBITS (bit_buf, 1) * DCT_TYPE_INTERLACED; DUMPBITS (bit_buf, bits, 1); } return macroblock_modes; } case D_TYPE: DUMPBITS (bit_buf, bits, 1); return MACROBLOCK_INTRA; default: return 0; } #undef bit_buf #undef bits #undef bit_ptr } static inline int get_xvmc_quantizer_scale (picture_t * picture) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int quantizer_scale_code; quantizer_scale_code = UBITS (bit_buf, 5); DUMPBITS (bit_buf, bits, 5); if (picture->q_scale_type) return non_linear_quantizer_scale [quantizer_scale_code]; else return quantizer_scale_code << 1; #undef bit_buf #undef bits #undef bit_ptr } static inline int get_xvmc_motion_delta (picture_t * picture, int f_code) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int delta; int sign; const MVtab * tab; if (bit_buf & 0x80000000) { DUMPBITS (bit_buf, bits, 1); return 0; } else if (bit_buf >= 0x0c000000) { tab = MV_4 + UBITS (bit_buf, 4); delta = (tab->delta << f_code) + 1; bits += tab->len + f_code + 1; bit_buf <<= tab->len; sign = SBITS (bit_buf, 1); bit_buf <<= 1; if (f_code) delta += UBITS (bit_buf, f_code); bit_buf <<= f_code; return (delta ^ sign) - sign; } else { tab = MV_10 + UBITS (bit_buf, 10); delta = (tab->delta << f_code) + 1; bits += tab->len + 1; bit_buf <<= tab->len; sign = SBITS (bit_buf, 1); bit_buf <<= 1; if (f_code) { NEEDBITS (bit_buf, bits, bit_ptr); delta += UBITS (bit_buf, f_code); DUMPBITS (bit_buf, bits, f_code); } return (delta ^ sign) - sign; } #undef bit_buf #undef bits #undef bit_ptr } static inline int bound_motion_vector (int vec, int f_code) { #if 1 unsigned int limit; int sign; limit = 16 << f_code; if ((unsigned int)(vec + limit) < 2 * limit) return vec; else { sign = ((int32_t)vec) >> 31; return vec - ((2 * limit) ^ sign) + sign; } #else return ((int32_t)vec << (27 - f_code)) >> (27 - f_code); #endif } static inline int get_xvmc_dmv (picture_t * picture) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) const DMVtab * tab; tab = DMV_2 + UBITS (bit_buf, 2); DUMPBITS (bit_buf, bits, tab->len); return tab->dmv; #undef bit_buf #undef bits #undef bit_ptr } static inline int get_xvmc_coded_block_pattern (picture_t * picture) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) const CBPtab * tab; NEEDBITS (bit_buf, bits, bit_ptr); if (bit_buf >= 0x20000000) { tab = CBP_7 + (UBITS (bit_buf, 7) - 16); DUMPBITS (bit_buf, bits, tab->len); return tab->cbp; } else { tab = CBP_9 + UBITS (bit_buf, 9); DUMPBITS (bit_buf, bits, tab->len); return tab->cbp; } #undef bit_buf #undef bits #undef bit_ptr } static inline int get_xvmc_luma_dc_dct_diff (picture_t * picture) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) const DCtab * tab; int size; int dc_diff; if (bit_buf < 0xf8000000) { tab = DC_lum_5 + UBITS (bit_buf, 5); size = tab->size; if (size) { bits += tab->len + size; bit_buf <<= tab->len; dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size); bit_buf <<= size; return dc_diff; } else { DUMPBITS (bit_buf, bits, 3); return 0; } } else { tab = DC_long + (UBITS (bit_buf, 9) - 0x1e0); size = tab->size; DUMPBITS (bit_buf, bits, tab->len); NEEDBITS (bit_buf, bits, bit_ptr); dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size); DUMPBITS (bit_buf, bits, size); return dc_diff; } #undef bit_buf #undef bits #undef bit_ptr } static inline int get_xvmc_chroma_dc_dct_diff (picture_t * picture) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) const DCtab * tab; int size; int dc_diff; if (bit_buf < 0xf8000000) { tab = DC_chrom_5 + UBITS (bit_buf, 5); size = tab->size; if (size) { bits += tab->len + size; bit_buf <<= tab->len; dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size); bit_buf <<= size; return dc_diff; } else { DUMPBITS (bit_buf, bits, 2); return 0; } } else { tab = DC_long + (UBITS (bit_buf, 10) - 0x3e0); size = tab->size; DUMPBITS (bit_buf, bits, tab->len + 1); NEEDBITS (bit_buf, bits, bit_ptr); dc_diff = UBITS (bit_buf, size) - UBITS (SBITS (~bit_buf, 1), size); DUMPBITS (bit_buf, bits, size); return dc_diff; } #undef bit_buf #undef bits #undef bit_ptr } #define SATURATE(val) \ do { \ if ((uint32_t)(val + 2048) > 4095) \ val = (val > 0) ? 2047 : -2048; \ } while (0) static void get_xvmc_intra_block_B14 (picture_t * picture) { int i; int j; int l; int val; const uint8_t * scan = picture->scan; uint8_t * scan_ptable = mpeg2_scan_orig_ptable; uint8_t * quant_matrix = picture->intra_quantizer_matrix; int quantizer_scale = picture->quantizer_scale; int mismatch; const DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; int16_t * dest; dest = picture->mc->blockptr; if( picture->mc->xvmc_accel & IDCT_ACCEL ) { if ( scan == mpeg2_scan_norm ) { scan = mpeg2_scan_norm_orig; scan_ptable = mpeg2_scan_norm_ptable; } else { scan = mpeg2_scan_alt_orig; scan_ptable = mpeg2_scan_alt_ptable; } } i = 0; mismatch = ~dest[0]; bit_buf = picture->bitstream_buf; bits = picture->bitstream_bits; bit_ptr = picture->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); while (1) { if (bit_buf >= 0x28000000) { tab = DCT_B14AC_5 + (UBITS (bit_buf, 5) - 5); i += tab->run; if (i >= 64) break; /* end of block */ normal_code: l = scan_ptable[j = scan[i]]; bit_buf <<= tab->len; bits += tab->len + 1; val = (tab->level * quantizer_scale * quant_matrix[l]) >> 4; /* if (bitstream_get (1)) val = -val; */ val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; mismatch ^= val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x04000000) { tab = DCT_B14_8 + (UBITS (bit_buf, 8) - 4); i += tab->run; if (i < 64) goto normal_code; /* escape code */ i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; /* illegal, check needed to avoid buffer overflow */ l = scan_ptable[j = scan[i]]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = (SBITS (bit_buf, 12) * quantizer_scale * quant_matrix[l]) / 16; SATURATE (val); dest[j] = val; mismatch ^= val; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x02000000) { tab = DCT_B14_10 + (UBITS (bit_buf, 10) - 8); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 + (UBITS (bit_buf, 13) - 16); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 + (UBITS (bit_buf, 15) - 16); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; /* illegal, check needed to avoid buffer overflow */ } dest[63] ^= mismatch & 1; DUMPBITS (bit_buf, bits, 2); /* dump end of block code */ picture->bitstream_buf = bit_buf; picture->bitstream_bits = bits; picture->bitstream_ptr = bit_ptr; } static void get_xvmc_intra_block_B15 (picture_t * picture) { int i; int j; int l; int val; const uint8_t * scan = picture->scan; uint8_t * scan_ptable = mpeg2_scan_orig_ptable; uint8_t * quant_matrix = picture->intra_quantizer_matrix; int quantizer_scale = picture->quantizer_scale; int mismatch; const DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; int16_t * dest; dest = picture->mc->blockptr; if( picture->mc->xvmc_accel & IDCT_ACCEL ) { if ( scan == mpeg2_scan_norm ) { scan = mpeg2_scan_norm_orig; scan_ptable = mpeg2_scan_norm_ptable; } else { scan = mpeg2_scan_alt_orig; scan_ptable = mpeg2_scan_alt_ptable; } } i = 0; mismatch = ~dest[0]; bit_buf = picture->bitstream_buf; bits = picture->bitstream_bits; bit_ptr = picture->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); while (1) { if (bit_buf >= 0x04000000) { tab = DCT_B15_8 + (UBITS (bit_buf, 8) - 4); i += tab->run; if (i < 64) { normal_code: l = scan_ptable[j = scan[i]]; bit_buf <<= tab->len; bits += tab->len + 1; val = (tab->level * quantizer_scale * quant_matrix[l]) >> 4; /* if (bitstream_get (1)) val = -val; */ val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; mismatch ^= val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } else { /* end of block. I commented out this code because if we */ /* dont exit here we will still exit at the later test :) */ /* if (i >= 128) break; */ /* end of block */ /* escape code */ i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; /* illegal, check against buffer overflow */ l = scan_ptable[j = scan[i]]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = (SBITS (bit_buf, 12) * quantizer_scale * quant_matrix[l]) / 16; SATURATE (val); dest[j] = val; mismatch ^= val; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); continue; } } else if (bit_buf >= 0x02000000) { tab = DCT_B15_10 + (UBITS (bit_buf, 10) - 8); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 + (UBITS (bit_buf, 13) - 16); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 + (UBITS (bit_buf, 15) - 16); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; /* illegal, check needed to avoid buffer overflow */ } dest[63] ^= mismatch & 1; DUMPBITS (bit_buf, bits, 4); /* dump end of block code */ picture->bitstream_buf = bit_buf; picture->bitstream_bits = bits; picture->bitstream_ptr = bit_ptr; } static void get_xvmc_non_intra_block (picture_t * picture) { int i; int j; int l; int val; const uint8_t * scan = picture->scan; uint8_t * scan_ptable = mpeg2_scan_orig_ptable; uint8_t * quant_matrix = picture->non_intra_quantizer_matrix; int quantizer_scale = picture->quantizer_scale; int mismatch; const DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; int16_t * dest; i = -1; mismatch = 1; dest = picture->mc->blockptr; if( picture->mc->xvmc_accel & IDCT_ACCEL ) { if ( scan == mpeg2_scan_norm ) { scan = mpeg2_scan_norm_orig; scan_ptable = mpeg2_scan_norm_ptable; } else { scan = mpeg2_scan_alt_orig; scan_ptable = mpeg2_scan_alt_ptable; } } bit_buf = picture->bitstream_buf; bits = picture->bitstream_bits; bit_ptr = picture->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); if (bit_buf >= 0x28000000) { tab = DCT_B14DC_5 + (UBITS (bit_buf, 5) - 5); goto entry_1; } else goto entry_2; while (1) { if (bit_buf >= 0x28000000) { tab = DCT_B14AC_5 + (UBITS (bit_buf, 5) - 5); entry_1: i += tab->run; if (i >= 64) break; /* end of block */ normal_code: l = scan_ptable[j = scan[i]]; bit_buf <<= tab->len; bits += tab->len + 1; val = ((2*tab->level+1) * quantizer_scale * quant_matrix[l]) >> 5; /* if (bitstream_get (1)) val = -val; */ val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; mismatch ^= val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } entry_2: if (bit_buf >= 0x04000000) { tab = DCT_B14_8 + (UBITS (bit_buf, 8) - 4); i += tab->run; if (i < 64) goto normal_code; /* escape code */ i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; /* illegal, check needed to avoid buffer overflow */ l = scan_ptable[j = scan[i]]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = 2 * (SBITS (bit_buf, 12) + SBITS (bit_buf, 1)) + 1; val = (val * quantizer_scale * quant_matrix[l]) / 32; SATURATE (val); dest[j] = val; mismatch ^= val; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x02000000) { tab = DCT_B14_10 + (UBITS (bit_buf, 10) - 8); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 + (UBITS (bit_buf, 13) - 16); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 + (UBITS (bit_buf, 15) - 16); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; /* illegal, check needed to avoid buffer overflow */ } dest[63] ^= mismatch & 1; DUMPBITS (bit_buf, bits, 2); /* dump end of block code */ picture->bitstream_buf = bit_buf; picture->bitstream_bits = bits; picture->bitstream_ptr = bit_ptr; } static void get_xvmc_mpeg1_intra_block (picture_t * picture) { int i; int j; int l; int val; const uint8_t * scan = picture->scan; uint8_t * scan_ptable = mpeg2_scan_orig_ptable; uint8_t * quant_matrix = picture->intra_quantizer_matrix; int quantizer_scale = picture->quantizer_scale; const DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; int16_t * dest; i = 0; dest = picture->mc->blockptr; if( picture->mc->xvmc_accel & IDCT_ACCEL ) { if ( scan == mpeg2_scan_norm ) { scan = mpeg2_scan_norm_orig; scan_ptable = mpeg2_scan_norm_ptable; } else { scan = mpeg2_scan_alt_orig; scan_ptable = mpeg2_scan_alt_ptable; } } bit_buf = picture->bitstream_buf; bits = picture->bitstream_bits; bit_ptr = picture->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); while (1) { if (bit_buf >= 0x28000000) { tab = DCT_B14AC_5 + (UBITS (bit_buf, 5) - 5); i += tab->run; if (i >= 64) break; /* end of block */ normal_code: l = scan_ptable[j = scan[i]]; bit_buf <<= tab->len; bits += tab->len + 1; val = (tab->level * quantizer_scale * quant_matrix[l]) >> 4; /* oddification */ val = (val - 1) | 1; /* if (bitstream_get (1)) val = -val; */ val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x04000000) { tab = DCT_B14_8 + (UBITS (bit_buf, 8) - 4); i += tab->run; if (i < 64) goto normal_code; /* escape code */ i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; /* illegal, check needed to avoid buffer overflow */ l = scan_ptable[j = scan[i]]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = SBITS (bit_buf, 8); if (! (val & 0x7f)) { DUMPBITS (bit_buf, bits, 8); val = UBITS (bit_buf, 8) + 2 * val; } val = (val * quantizer_scale * quant_matrix[l]) / 16; /* oddification */ val = (val + ~SBITS (val, 1)) | 1; SATURATE (val); dest[j] = val; DUMPBITS (bit_buf, bits, 8); NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x02000000) { tab = DCT_B14_10 + (UBITS (bit_buf, 10) - 8); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 + (UBITS (bit_buf, 13) - 16); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 + (UBITS (bit_buf, 15) - 16); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; /* illegal, check needed to avoid buffer overflow */ } DUMPBITS (bit_buf, bits, 2); /* dump end of block code */ picture->bitstream_buf = bit_buf; picture->bitstream_bits = bits; picture->bitstream_ptr = bit_ptr; } static void get_xvmc_mpeg1_non_intra_block (picture_t * picture) { int i; int j; int l; int val; const uint8_t * scan = picture->scan; uint8_t * scan_ptable = mpeg2_scan_orig_ptable; uint8_t * quant_matrix = picture->non_intra_quantizer_matrix; int quantizer_scale = picture->quantizer_scale; const DCTtab * tab; uint32_t bit_buf; int bits; uint8_t * bit_ptr; int16_t * dest; i = -1; dest = picture->mc->blockptr; if( picture->mc->xvmc_accel & IDCT_ACCEL ) { if ( scan == mpeg2_scan_norm ) { scan = mpeg2_scan_norm_orig; scan_ptable = mpeg2_scan_norm_ptable; } else { scan = mpeg2_scan_alt_orig; scan_ptable = mpeg2_scan_alt_ptable; } } bit_buf = picture->bitstream_buf; bits = picture->bitstream_bits; bit_ptr = picture->bitstream_ptr; NEEDBITS (bit_buf, bits, bit_ptr); if (bit_buf >= 0x28000000) { tab = DCT_B14DC_5 + (UBITS (bit_buf, 5) - 5); goto entry_1; } else goto entry_2; while (1) { if (bit_buf >= 0x28000000) { tab = DCT_B14AC_5 + (UBITS (bit_buf, 5) - 5); entry_1: i += tab->run; if (i >= 64) break; /* end of block */ normal_code: l = scan_ptable[j = scan[i]]; bit_buf <<= tab->len; bits += tab->len + 1; val = ((2*tab->level+1) * quantizer_scale * quant_matrix[l]) >> 5; /* oddification */ val = (val - 1) | 1; /* if (bitstream_get (1)) val = -val; */ val = (val ^ SBITS (bit_buf, 1)) - SBITS (bit_buf, 1); SATURATE (val); dest[j] = val; bit_buf <<= 1; NEEDBITS (bit_buf, bits, bit_ptr); continue; } entry_2: if (bit_buf >= 0x04000000) { tab = DCT_B14_8 + (UBITS (bit_buf, 8) - 4); i += tab->run; if (i < 64) goto normal_code; /* escape code */ i += UBITS (bit_buf << 6, 6) - 64; if (i >= 64) break; /* illegal, check needed to avoid buffer overflow */ l = scan_ptable[j = scan[i]]; DUMPBITS (bit_buf, bits, 12); NEEDBITS (bit_buf, bits, bit_ptr); val = SBITS (bit_buf, 8); if (! (val & 0x7f)) { DUMPBITS (bit_buf, bits, 8); val = UBITS (bit_buf, 8) + 2 * val; } val = 2 * (val + SBITS (val, 1)) + 1; val = (val * quantizer_scale * quant_matrix[l]) / 32; /* oddification */ val = (val + ~SBITS (val, 1)) | 1; SATURATE (val); dest[j] = val; DUMPBITS (bit_buf, bits, 8); NEEDBITS (bit_buf, bits, bit_ptr); continue; } else if (bit_buf >= 0x02000000) { tab = DCT_B14_10 + (UBITS (bit_buf, 10) - 8); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00800000) { tab = DCT_13 + (UBITS (bit_buf, 13) - 16); i += tab->run; if (i < 64) goto normal_code; } else if (bit_buf >= 0x00200000) { tab = DCT_15 + (UBITS (bit_buf, 15) - 16); i += tab->run; if (i < 64) goto normal_code; } else { tab = DCT_16 + UBITS (bit_buf, 16); bit_buf <<= 16; GETWORD (bit_buf, bits + 16, bit_ptr); i += tab->run; if (i < 64) goto normal_code; } break; /* illegal, check needed to avoid buffer overflow */ } DUMPBITS (bit_buf, bits, 2); /* dump end of block code */ picture->bitstream_buf = bit_buf; picture->bitstream_bits = bits; picture->bitstream_ptr = bit_ptr; } static inline void slice_xvmc_intra_DCT (picture_t * picture, int cc, uint8_t * dest, int stride) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) NEEDBITS (bit_buf, bits, bit_ptr); /* Get the intra DC coefficient and inverse quantize it */ // printf("slice: slice_xvmc_intra_DCT cc=%d pred[0]=%d\n",cc,picture->dc_dct_pred[0]); if (cc == 0) picture->dc_dct_pred[0] += get_xvmc_luma_dc_dct_diff (picture); else picture->dc_dct_pred[cc] += get_xvmc_chroma_dc_dct_diff (picture); //TODO conversion to signed format // printf("slice: pred[0]=%d presision=%d\n",picture->dc_dct_pred[0], // picture->intra_dc_precision); mpeg2_zero_block(picture->mc->blockptr); picture->mc->blockptr[0] = picture->dc_dct_pred[cc] << (3 - picture->intra_dc_precision); if (picture->mpeg1) { if (picture->picture_coding_type != D_TYPE) get_xvmc_mpeg1_intra_block (picture); } else if (picture->intra_vlc_format) get_xvmc_intra_block_B15 (picture); else get_xvmc_intra_block_B14 (picture); if((picture->mc->xvmc_accel & ACCEL) == MOTION_ACCEL) { //motion_comp only no idct acceleration so do it in software mpeg2_idct (picture->mc->blockptr); } picture->mc->blockptr += 64; #undef bit_buf #undef bits #undef bit_ptr } static inline void slice_xvmc_non_intra_DCT (picture_t * picture, uint8_t * dest, int stride) { mpeg2_zero_block(picture->mc->blockptr); if (picture->mpeg1) get_xvmc_mpeg1_non_intra_block (picture); else get_xvmc_non_intra_block (picture); if((picture->mc->xvmc_accel & ACCEL) == MOTION_ACCEL) { // motion comp only no idct acceleration so do it in sw mpeg2_idct (picture->mc->blockptr); } picture->mc->blockptr += 64; } static void motion_mp1 (picture_t * picture, motion_t * motion, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int motion_x, motion_y; NEEDBITS (bit_buf, bits, bit_ptr); motion_x = (motion->pmv[0][0] + (get_xvmc_motion_delta (picture, motion->f_code[0]) << motion->f_code[1])); motion_x = bound_motion_vector (motion_x, motion->f_code[0] + motion->f_code[1]); motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = (motion->pmv[0][1] + (get_xvmc_motion_delta (picture, motion->f_code[0]) << motion->f_code[1])); motion_y = bound_motion_vector (motion_y, motion->f_code[0] + motion->f_code[1]); motion->pmv[0][1] = motion_y; #undef bit_buf #undef bits #undef bit_ptr } static void motion_fr_frame (picture_t * picture, motion_t * motion, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int motion_x, motion_y; NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_xvmc_motion_delta (picture, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_xvmc_motion_delta (picture, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = motion_y; #undef bit_buf #undef bits #undef bit_ptr } static void motion_fr_field (picture_t * picture, motion_t * motion, void (** table) (uint8_t *, uint8_t *, int, int), int dir) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int motion_x, motion_y, field; // unsigned int pos_x, pos_y, xy_half; NEEDBITS (bit_buf, bits, bit_ptr); field = UBITS (bit_buf, 1); picture->XvMC_mv_field_sel[0][dir] = field; DUMPBITS (bit_buf, bits, 1); motion_x = motion->pmv[0][0] + get_xvmc_motion_delta (picture, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = (motion->pmv[0][1] >> 1) + get_xvmc_motion_delta (picture, motion->f_code[1]); /* motion_y = bound_motion_vector (motion_y, motion->f_code[1]); */ motion->pmv[0][1] = motion_y << 1; NEEDBITS (bit_buf, bits, bit_ptr); field = UBITS (bit_buf, 1); //TODO look at field select need bob (weave ok) picture->XvMC_mv_field_sel[1][dir] = field; DUMPBITS (bit_buf, bits, 1); motion_x = motion->pmv[1][0] + get_xvmc_motion_delta (picture, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = (motion->pmv[1][1] >> 1) + get_xvmc_motion_delta (picture, motion->f_code[1]); /* motion_y = bound_motion_vector (motion_y, motion->f_code[1]); */ motion->pmv[1][1] = motion_y << 1; #undef bit_buf #undef bits #undef bit_ptr } static void motion_fr_dmv (picture_t * picture, motion_t * motion, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int motion_x, motion_y; // TODO field select ?? possible need to be 0 picture->XvMC_mv_field_sel[0][0] = picture->XvMC_mv_field_sel[1][0] = 0; NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_xvmc_motion_delta (picture, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = (motion->pmv[0][1] >> 1) + get_xvmc_motion_delta (picture, motion->f_code[1]); /* motion_y = bound_motion_vector (motion_y, motion->f_code[1]); */ motion->pmv[1][1] = motion->pmv[0][1] = motion_y << 1; #undef bit_buf #undef bits #undef bit_ptr } static void motion_reuse (picture_t * picture, motion_t * motion, void (** table) (uint8_t *, uint8_t *, int, int)) { int motion_x, motion_y; motion_x = motion->pmv[0][0]; motion_y = motion->pmv[0][1]; } /* like motion_frame, but parsing without actual motion compensation */ static void motion_fr_conceal (picture_t * picture) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int tmp; NEEDBITS (bit_buf, bits, bit_ptr); tmp = (picture->f_motion.pmv[0][0] + get_xvmc_motion_delta (picture, picture->f_motion.f_code[0])); tmp = bound_motion_vector (tmp, picture->f_motion.f_code[0]); picture->f_motion.pmv[1][0] = picture->f_motion.pmv[0][0] = tmp; NEEDBITS (bit_buf, bits, bit_ptr); tmp = (picture->f_motion.pmv[0][1] + get_xvmc_motion_delta (picture, picture->f_motion.f_code[1])); tmp = bound_motion_vector (tmp, picture->f_motion.f_code[1]); picture->f_motion.pmv[1][1] = picture->f_motion.pmv[0][1] = tmp; DUMPBITS (bit_buf, bits, 1); /* remove marker_bit */ #undef bit_buf #undef bits #undef bit_ptr } static void motion_fi_field (picture_t * picture, motion_t * motion, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int motion_x, motion_y; uint8_t ** ref_field; NEEDBITS (bit_buf, bits, bit_ptr); ref_field = motion->ref2[UBITS (bit_buf, 1)]; // TODO field select may need to do something here for bob (weave ok) picture->XvMC_mv_field_sel[0][0] = picture->XvMC_mv_field_sel[1][0] = 0; DUMPBITS (bit_buf, bits, 1); motion_x = motion->pmv[0][0] + get_xvmc_motion_delta (picture, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_xvmc_motion_delta (picture, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = motion_y; #undef bit_buf #undef bits #undef bit_ptr } static void motion_fi_16x8 (picture_t * picture, motion_t * motion, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int motion_x, motion_y; uint8_t ** ref_field; NEEDBITS (bit_buf, bits, bit_ptr); ref_field = motion->ref2[UBITS (bit_buf, 1)]; // TODO field select may need to do something here bob (weave ok) picture->XvMC_mv_field_sel[0][0] = picture->XvMC_mv_field_sel[1][0] = 0; DUMPBITS (bit_buf, bits, 1); motion_x = motion->pmv[0][0] + get_xvmc_motion_delta (picture, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_xvmc_motion_delta (picture, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[0][1] = motion_y; NEEDBITS (bit_buf, bits, bit_ptr); ref_field = motion->ref2[UBITS (bit_buf, 1)]; // TODO field select may need to do something here for bob (weave ok) picture->XvMC_mv_field_sel[0][0] = picture->XvMC_mv_field_sel[1][0] = 0; DUMPBITS (bit_buf, bits, 1); motion_x = motion->pmv[1][0] + get_xvmc_motion_delta (picture, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[1][1] + get_xvmc_motion_delta (picture, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion_y; #undef bit_buf #undef bits #undef bit_ptr } static void motion_fi_dmv (picture_t * picture, motion_t * motion, void (** table) (uint8_t *, uint8_t *, int, int)) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int motion_x, motion_y; NEEDBITS (bit_buf, bits, bit_ptr); motion_x = motion->pmv[0][0] + get_xvmc_motion_delta (picture, motion->f_code[0]); motion_x = bound_motion_vector (motion_x, motion->f_code[0]); motion->pmv[1][0] = motion->pmv[0][0] = motion_x; NEEDBITS (bit_buf, bits, bit_ptr); motion_y = motion->pmv[0][1] + get_xvmc_motion_delta (picture, motion->f_code[1]); motion_y = bound_motion_vector (motion_y, motion->f_code[1]); motion->pmv[1][1] = motion->pmv[0][1] = motion_y; // TODO field select may need to do something here for bob (weave ok) picture->XvMC_mv_field_sel[0][0] = picture->XvMC_mv_field_sel[1][0] = 0; #undef bit_buf #undef bits #undef bit_ptr } static void motion_fi_conceal (picture_t * picture) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int tmp; NEEDBITS (bit_buf, bits, bit_ptr); DUMPBITS (bit_buf, bits, 1); /* remove field_select */ tmp = (picture->f_motion.pmv[0][0] + get_xvmc_motion_delta (picture, picture->f_motion.f_code[0])); tmp = bound_motion_vector (tmp, picture->f_motion.f_code[0]); picture->f_motion.pmv[1][0] = picture->f_motion.pmv[0][0] = tmp; NEEDBITS (bit_buf, bits, bit_ptr); tmp = (picture->f_motion.pmv[0][1] + get_xvmc_motion_delta (picture, picture->f_motion.f_code[1])); tmp = bound_motion_vector (tmp, picture->f_motion.f_code[1]); picture->f_motion.pmv[1][1] = picture->f_motion.pmv[0][1] = tmp; DUMPBITS (bit_buf, bits, 1); /* remove marker_bit */ #undef bit_buf #undef bits #undef bit_ptr } #define MOTION_CALL(routine,direction) \ do { \ if ((direction) & MACROBLOCK_MOTION_FORWARD) \ routine (picture, &(picture->f_motion), mpeg2_mc.put); \ if ((direction) & MACROBLOCK_MOTION_BACKWARD) \ routine (picture, &(picture->b_motion), \ ((direction) & MACROBLOCK_MOTION_FORWARD ? \ mpeg2_mc.avg : mpeg2_mc.put)); \ } while (0) #define NEXT_MACROBLOCK \ do { \ picture->offset += 16; \ if (picture->offset == picture->coded_picture_width) { \ do { /* just so we can use the break statement */ \ if (picture->current_frame->proc_slice) { \ picture->current_frame->proc_slice (picture->current_frame, \ picture->dest); \ if (picture->picture_coding_type == B_TYPE) \ break; \ } \ picture->dest[0] += 16 * picture->pitches[0]; \ picture->dest[1] += 8 * picture->pitches[1]; \ picture->dest[2] += 8 * picture->pitches[2]; \ } while (0); \ picture->v_offset += 16; \ if (picture->v_offset > picture->limit_y) { \ if (mpeg2_cpu_state_restore) \ mpeg2_cpu_state_restore (&cpu_state); \ return; \ } \ picture->offset = 0; \ } \ } while (0) static inline int slice_xvmc_init (picture_t * picture, int code) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) int offset, height; struct vo_frame_s * forward_reference_frame; struct vo_frame_s * backward_reference_frame; const MBAtab * mba; offset = picture->picture_structure == BOTTOM_FIELD; picture->pitches[0] = picture->current_frame->pitches[0]; picture->pitches[1] = picture->current_frame->pitches[1]; picture->pitches[2] = picture->current_frame->pitches[2]; if( picture->forward_reference_frame ) { forward_reference_frame = picture->forward_reference_frame; } else { /* return 1; */ forward_reference_frame = picture->current_frame; } if( picture->backward_reference_frame ) { backward_reference_frame = picture->backward_reference_frame; } else { /* return 1; */ backward_reference_frame = picture->current_frame; } picture->f_motion.ref[0][0] = forward_reference_frame->base[0] + (offset ? picture->pitches[0] : 0); picture->f_motion.ref[0][1] = forward_reference_frame->base[1] + (offset ? picture->pitches[1] : 0); picture->f_motion.ref[0][2] = forward_reference_frame->base[2] + (offset ? picture->pitches[2] : 0); picture->b_motion.ref[0][0] = backward_reference_frame->base[0] + (offset ? picture->pitches[0] : 0); picture->b_motion.ref[0][1] = backward_reference_frame->base[1] + (offset ? picture->pitches[1] : 0); picture->b_motion.ref[0][2] = backward_reference_frame->base[2] + (offset ? picture->pitches[2] : 0); if (picture->picture_structure != FRAME_PICTURE) { uint8_t ** forward_ref; int bottom_field; bottom_field = (picture->picture_structure == BOTTOM_FIELD); picture->dmv_offset = bottom_field ? 1 : -1; picture->f_motion.ref2[0] = picture->f_motion.ref[bottom_field]; picture->f_motion.ref2[1] = picture->f_motion.ref[!bottom_field]; picture->b_motion.ref2[0] = picture->b_motion.ref[bottom_field]; picture->b_motion.ref2[1] = picture->b_motion.ref[!bottom_field]; forward_ref = forward_reference_frame->base; if (picture->second_field && (picture->picture_coding_type != B_TYPE)) forward_ref = picture->current_frame->base; picture->f_motion.ref[1][0] = forward_ref[0] + (bottom_field ? 0 : picture->pitches[0]); picture->f_motion.ref[1][1] = forward_ref[1] + (bottom_field ? 0 : picture->pitches[1]); picture->f_motion.ref[1][2] = forward_ref[2] + (bottom_field ? 0 : picture->pitches[2]); picture->b_motion.ref[1][0] = backward_reference_frame->base[0] + (bottom_field ? 0 : picture->pitches[0]); picture->b_motion.ref[1][1] = backward_reference_frame->base[1] + (bottom_field ? 0 : picture->pitches[1]); picture->b_motion.ref[1][2] = backward_reference_frame->base[2] + (bottom_field ? 0 : picture->pitches[2]); } picture->f_motion.pmv[0][0] = picture->f_motion.pmv[0][1] = 0; picture->f_motion.pmv[1][0] = picture->f_motion.pmv[1][1] = 0; picture->b_motion.pmv[0][0] = picture->b_motion.pmv[0][1] = 0; picture->b_motion.pmv[1][0] = picture->b_motion.pmv[1][1] = 0; picture->v_offset = (code - 1) * 16; offset = (code - 1); if (picture->current_frame->proc_slice && picture->picture_coding_type == B_TYPE) offset = 0; else if (picture->picture_structure != FRAME_PICTURE) offset = 2 * offset; picture->dest[0] = picture->current_frame->base[0] + picture->pitches[0] * offset * 16; picture->dest[1] = picture->current_frame->base[1] + picture->pitches[1] * offset * 8; picture->dest[2] = picture->current_frame->base[2] + picture->pitches[2] * offset * 8; height = picture->coded_picture_height; switch (picture->picture_structure) { case BOTTOM_FIELD: picture->dest[0] += picture->pitches[0]; picture->dest[1] += picture->pitches[1]; picture->dest[2] += picture->pitches[2]; /* follow thru */ case TOP_FIELD: picture->pitches[0] <<= 1; picture->pitches[1] <<= 1; picture->pitches[2] <<= 1; height >>= 1; } picture->limit_x = 2 * picture->coded_picture_width - 32; picture->limit_y_16 = 2 * height - 32; picture->limit_y_8 = 2 * height - 16; picture->limit_y = height - 16; //TODO conversion to signed format signed format if((picture->mc->xvmc_accel & ACCEL) == MOTION_ACCEL && !(picture->mc->xvmc_accel & SIGNED_INTRA)) { //Motion Comp only unsigned intra // original: picture->dc_dct_pred[0] = picture->dc_dct_pred[1] = picture->dc_dct_pred[2] = 1 << (picture->intra_dc_precision + 7); } else { //Motion Comp only signed intra MOTION_ACCEL+SIGNED_INTRA picture->dc_dct_pred[0] = picture->dc_dct_pred[1] = picture->dc_dct_pred[2] = 0; } picture->quantizer_scale = get_xvmc_quantizer_scale (picture); /* ignore intra_slice and all the extra data */ while (bit_buf & 0x80000000) { DUMPBITS (bit_buf, bits, 9); NEEDBITS (bit_buf, bits, bit_ptr); } /* decode initial macroblock address increment */ offset = 0; while (1) { if (bit_buf >= 0x08000000) { mba = MBA_5 + (UBITS (bit_buf, 6) - 2); break; } else if (bit_buf >= 0x01800000) { mba = MBA_11 + (UBITS (bit_buf, 12) - 24); break; } else switch (UBITS (bit_buf, 12)) { case 8: /* macroblock_escape */ offset += 33; DUMPBITS (bit_buf, bits, 11); NEEDBITS (bit_buf, bits, bit_ptr); continue; case 15: /* macroblock_stuffing (MPEG1 only) */ bit_buf &= 0xfffff; DUMPBITS (bit_buf, bits, 11); NEEDBITS (bit_buf, bits, bit_ptr); continue; default: /* error */ return 1; } } DUMPBITS (bit_buf, bits, mba->len + 1); picture->offset = (offset + mba->mba) << 4; while (picture->offset - picture->coded_picture_width >= 0) { picture->offset -= picture->coded_picture_width; if ((picture->current_frame->proc_slice == NULL) || (picture->picture_coding_type != B_TYPE)) { picture->dest[0] += 16 * picture->pitches[0]; picture->dest[1] += 8 * picture->pitches[1]; picture->dest[2] += 8 * picture->pitches[2]; } picture->v_offset += 16; } if (picture->v_offset > picture->limit_y) return 1; return 0; #undef bit_buf #undef bits #undef bit_ptr } void mpeg2_xvmc_slice (mpeg2dec_accel_t *accel, picture_t * picture, int code, uint8_t * buffer) { #define bit_buf (picture->bitstream_buf) #define bits (picture->bitstream_bits) #define bit_ptr (picture->bitstream_ptr) cpu_state_t cpu_state; xine_xvmc_t *xvmc = (xine_xvmc_t *) picture->current_frame->accel_data; if (1 == code) { accel->xvmc_last_slice_code = 0; } if ((code != accel->xvmc_last_slice_code + 1) && (code != accel->xvmc_last_slice_code)) return; bitstream_init (picture, buffer); if (slice_xvmc_init (picture, code)) return; if (mpeg2_cpu_state_save) mpeg2_cpu_state_save (&cpu_state); while (1) { int macroblock_modes; int mba_inc; const MBAtab * mba; NEEDBITS (bit_buf, bits, bit_ptr); macroblock_modes = get_xvmc_macroblock_modes (picture); //macroblock_modes() picture->XvMC_mb_type = macroblock_modes & 0x1F; picture->XvMC_dct_type = (macroblock_modes & DCT_TYPE_INTERLACED)>>5; picture->XvMC_motion_type = (macroblock_modes & MOTION_TYPE_MASK)>>6; picture->XvMC_x = picture->offset/16; picture->XvMC_y = picture->v_offset/16; if((picture->XvMC_x == 0) && (picture->XvMC_y == 0)) { picture->XvMC_mv_field_sel[0][0] = picture->XvMC_mv_field_sel[1][0] = picture->XvMC_mv_field_sel[0][1] = picture->XvMC_mv_field_sel[1][1] = 0; } picture->XvMC_cbp = 0x3f; //TODO set for intra 4:2:0 6 blocks yyyyuv all enabled /* maybe integrate MACROBLOCK_QUANT test into get_xvmc_macroblock_modes ? */ if (macroblock_modes & MACROBLOCK_QUANT) picture->quantizer_scale = get_xvmc_quantizer_scale (picture); if (macroblock_modes & MACROBLOCK_INTRA) { int DCT_offset, DCT_stride; int offset; uint8_t * dest_y; if (picture->concealment_motion_vectors) { if (picture->picture_structure == FRAME_PICTURE) motion_fr_conceal (picture); else motion_fi_conceal (picture); } else { picture->f_motion.pmv[0][0] = picture->f_motion.pmv[0][1] = 0; picture->f_motion.pmv[1][0] = picture->f_motion.pmv[1][1] = 0; picture->b_motion.pmv[0][0] = picture->b_motion.pmv[0][1] = 0; picture->b_motion.pmv[1][0] = picture->b_motion.pmv[1][1] = 0; } if (macroblock_modes & DCT_TYPE_INTERLACED) { DCT_offset = picture->pitches[0]; DCT_stride = picture->pitches[0] * 2; } else { DCT_offset = picture->pitches[0] * 8; DCT_stride = picture->pitches[0]; } offset = picture->offset; dest_y = picture->dest[0] + offset; // unravaled loop of 6 block(i) calls in macroblock() slice_xvmc_intra_DCT (picture, 0, dest_y, DCT_stride); slice_xvmc_intra_DCT (picture, 0, dest_y + 8, DCT_stride); slice_xvmc_intra_DCT (picture, 0, dest_y + DCT_offset, DCT_stride); slice_xvmc_intra_DCT (picture, 0, dest_y + DCT_offset + 8, DCT_stride); slice_xvmc_intra_DCT (picture, 1, picture->dest[1] + (offset >> 1), picture->pitches[1]); slice_xvmc_intra_DCT (picture, 2, picture->dest[2] + (offset >> 1), picture->pitches[2]); if (picture->picture_coding_type == D_TYPE) { NEEDBITS (bit_buf, bits, bit_ptr); DUMPBITS (bit_buf, bits, 1); } } else { picture->XvMC_cbp = 0; if (picture->picture_structure == FRAME_PICTURE) switch (macroblock_modes & MOTION_TYPE_MASK) { case MC_FRAME: if (picture->mpeg1) { MOTION_CALL (motion_mp1, macroblock_modes); } else { MOTION_CALL (motion_fr_frame, macroblock_modes); } break; case MC_FIELD: //MOTION_CALL (motion_fr_field, macroblock_modes); if ((macroblock_modes) & MACROBLOCK_MOTION_FORWARD) motion_fr_field(picture, &(picture->f_motion), mpeg2_mc.put,0); if ((macroblock_modes) & MACROBLOCK_MOTION_BACKWARD) motion_fr_field(picture, &(picture->b_motion), ((macroblock_modes) & MACROBLOCK_MOTION_FORWARD ? mpeg2_mc.avg : mpeg2_mc.put),1); break; case MC_DMV: MOTION_CALL (motion_fr_dmv, MACROBLOCK_MOTION_FORWARD); break; case 0: /* non-intra mb without forward mv in a P picture */ picture->f_motion.pmv[0][0] = 0; picture->f_motion.pmv[0][1] = 0; picture->f_motion.pmv[1][0] = 0; picture->f_motion.pmv[1][1] = 0; // MOTION_CALL (motion_zero, MACROBLOCK_MOTION_FORWARD); break; } else switch (macroblock_modes & MOTION_TYPE_MASK) { case MC_FIELD: MOTION_CALL (motion_fi_field, macroblock_modes); break; case MC_16X8: MOTION_CALL (motion_fi_16x8, macroblock_modes); break; case MC_DMV: MOTION_CALL (motion_fi_dmv, MACROBLOCK_MOTION_FORWARD); break; case 0: /* non-intra mb without forward mv in a P picture */ picture->f_motion.pmv[0][0] = 0; picture->f_motion.pmv[0][1] = 0; picture->f_motion.pmv[1][0] = 0; picture->f_motion.pmv[1][1] = 0; // MOTION_CALL (motion_zero, MACROBLOCK_MOTION_FORWARD); break; } if (macroblock_modes & MACROBLOCK_PATTERN) { int coded_block_pattern; int DCT_offset, DCT_stride; int offset; uint8_t * dest_y; if (macroblock_modes & DCT_TYPE_INTERLACED) { DCT_offset = picture->pitches[0]; DCT_stride = picture->pitches[0] * 2; } else { DCT_offset = picture->pitches[0] * 8; DCT_stride = picture->pitches[0]; } picture->XvMC_cbp = coded_block_pattern = get_xvmc_coded_block_pattern (picture); offset = picture->offset; dest_y = picture->dest[0] + offset; // TODO optimize not fully used for idct accel only mc. if (coded_block_pattern & 0x20) slice_xvmc_non_intra_DCT (picture, dest_y, DCT_stride); // cc0 luma 0 if (coded_block_pattern & 0x10) slice_xvmc_non_intra_DCT (picture, dest_y + 8, DCT_stride); // cc0 luma 1 if (coded_block_pattern & 0x08) slice_xvmc_non_intra_DCT (picture, dest_y + DCT_offset, DCT_stride); // cc0 luma 2 if (coded_block_pattern & 0x04) slice_xvmc_non_intra_DCT (picture, dest_y + DCT_offset + 8, DCT_stride); // cc0 luma 3 if (coded_block_pattern & 0x2) slice_xvmc_non_intra_DCT (picture, picture->dest[1] + (offset >> 1), picture->pitches[1]); // cc1 croma if (coded_block_pattern & 0x1) slice_xvmc_non_intra_DCT (picture, picture->dest[2] + (offset >> 1), picture->pitches[2]); // cc2 croma } if((picture->mc->xvmc_accel & ACCEL) == MOTION_ACCEL && !(picture->mc->xvmc_accel & SIGNED_INTRA)) { // original: picture->dc_dct_pred[0] = picture->dc_dct_pred[1] = picture->dc_dct_pred[2] = 128 << picture->intra_dc_precision; } else { // MOTION_ACCEL+SIGNED_INTRA picture->dc_dct_pred[0] = picture->dc_dct_pred[1] = picture->dc_dct_pred[2] = 0; } } xvmc->proc_macro_block(picture->XvMC_x, picture->XvMC_y, picture->XvMC_mb_type, picture->XvMC_motion_type, picture->XvMC_mv_field_sel, picture->XvMC_dmvector, picture->XvMC_cbp, picture->XvMC_dct_type, picture->current_frame, picture->forward_reference_frame, picture->backward_reference_frame, picture->picture_structure, picture->second_field, picture->f_motion.pmv, picture->b_motion.pmv); NEXT_MACROBLOCK; NEEDBITS (bit_buf, bits, bit_ptr); mba_inc = 0; while (1) { if (bit_buf >= 0x10000000) { mba = MBA_5 + (UBITS (bit_buf, 5) - 2); break; } else if (bit_buf >= 0x03000000) { mba = MBA_11 + (UBITS (bit_buf, 11) - 24); break; } else switch (UBITS (bit_buf, 11)) { case 8: /* macroblock_escape */ mba_inc += 33; /* pass through */ case 15: /* macroblock_stuffing (MPEG1 only) */ DUMPBITS (bit_buf, bits, 11); NEEDBITS (bit_buf, bits, bit_ptr); continue; default: /* end of slice, or error */ if (mpeg2_cpu_state_restore) mpeg2_cpu_state_restore (&cpu_state); accel->xvmc_last_slice_code = code; return; } } DUMPBITS (bit_buf, bits, mba->len); mba_inc += mba->mba; if (mba_inc) { //TODO conversion to signed format signed format if((picture->mc->xvmc_accel & ACCEL) == MOTION_ACCEL && !(picture->mc->xvmc_accel & SIGNED_INTRA)) { // original: picture->dc_dct_pred[0] = picture->dc_dct_pred[1] = picture->dc_dct_pred[2] = 128 << picture->intra_dc_precision; } else { // MOTION_ACCEL+SIGNED_INTRA picture->dc_dct_pred[0] = picture->dc_dct_pred[1] = picture->dc_dct_pred[2] = 0; } picture->XvMC_cbp = 0; if (picture->picture_coding_type == P_TYPE) { picture->f_motion.pmv[0][0] = picture->f_motion.pmv[0][1] = 0; picture->f_motion.pmv[1][0] = picture->f_motion.pmv[1][1] = 0; do { if(picture->mc->xvmc_accel) { /* derive motion_type */ if(picture->picture_structure == FRAME_PICTURE) { picture->XvMC_motion_type = XINE_MC_FRAME; } else { picture->XvMC_motion_type = XINE_MC_FIELD; /* predict from field of same parity */ picture->XvMC_mv_field_sel[0][0] = picture->XvMC_mv_field_sel[0][1] = (picture->picture_structure==BOTTOM_FIELD); } picture->XvMC_mb_type = macroblock_modes & 0x1E; picture->XvMC_x = picture->offset/16; picture->XvMC_y = picture->v_offset/16; xvmc->proc_macro_block(picture->XvMC_x,picture->XvMC_y, picture->XvMC_mb_type, picture->XvMC_motion_type, picture->XvMC_mv_field_sel, picture->XvMC_dmvector, picture->XvMC_cbp, picture->XvMC_dct_type, picture->current_frame, picture->forward_reference_frame, picture->backward_reference_frame, picture->picture_structure, picture->second_field, picture->f_motion.pmv, picture->b_motion.pmv); } else { // MOTION_CALL (motion_zero, MACROBLOCK_MOTION_FORWARD); } NEXT_MACROBLOCK; } while (--mba_inc); } else { do { if(picture->mc->xvmc_accel) { /* derive motion_type */ if(picture->picture_structure == FRAME_PICTURE) { picture->XvMC_motion_type = XINE_MC_FRAME; } else { picture->XvMC_motion_type = XINE_MC_FIELD; /* predict from field of same parity */ picture->XvMC_mv_field_sel[0][0] = picture->XvMC_mv_field_sel[0][1] = (picture->picture_structure==BOTTOM_FIELD); } picture->XvMC_mb_type = macroblock_modes & 0x1E; picture->XvMC_x = picture->offset/16; picture->XvMC_y = picture->v_offset/16; xvmc->proc_macro_block(picture->XvMC_x,picture->XvMC_y, picture->XvMC_mb_type, picture->XvMC_motion_type, picture->XvMC_mv_field_sel, picture->XvMC_dmvector, picture->XvMC_cbp, picture->XvMC_dct_type, picture->current_frame, picture->forward_reference_frame, picture->backward_reference_frame, picture->picture_structure, picture->second_field, picture->f_motion.pmv, picture->b_motion.pmv); } else { MOTION_CALL (motion_reuse, macroblock_modes); } NEXT_MACROBLOCK; } while (--mba_inc); } } } accel->xvmc_last_slice_code = code; #undef bit_buf #undef bits #undef bit_ptr }