/* * Copyright (C) 2000-2002 the xine project * * This file is part of xine, a free video player. * * xine is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * xine is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA * * FLI Video Decoder by Mike Melanson (melanson@pcisys.net) and * Roberto Togni * For more information on the FLI format, as well as various traps to * avoid when implementing a FLI decoder, visit: * http://www.pcisys.net/~melanson/codecs/ * * $Id: fli.c,v 1.3 2002/08/28 03:37:17 tmmm Exp $ */ #include #include #include #include #include #include "video_out.h" #include "buffer.h" #include "xine_internal.h" #include "xineutils.h" #include "bswap.h" #define VIDEOBUFSIZE 128*1024 #define PALETTE_SIZE (256 * 4) #define LE_16(x) (le2me_16(*(uint16_t *)(x))) #define LE_32(x) (le2me_32(*(uint32_t *)(x))) #define FLI_256_COLOR 4 #define FLI_DELTA 7 #define FLI_COLOR 11 #define FLI_LC 12 #define FLI_BLACK 13 #define FLI_BRUN 15 #define FLI_COPY 16 #define FLI_MINI 18 /************************************************************************** * fli specific decode functions *************************************************************************/ typedef struct fli_decoder_s { video_decoder_t video_decoder; /* parent video decoder structure */ /* these are traditional variables in a video decoder object */ vo_instance_t *video_out; /* object that will receive frames */ uint64_t video_step; /* frame duration in pts units */ int decoder_ok; /* current decoder status */ int skipframes; unsigned char *buf; /* the accumulated buffer data */ int bufsize; /* the maximum size of buf */ int size; /* the current size of buf */ int width; /* the width of a video frame */ int height; /* the height of a video frame */ /* FLI decoding parameters */ unsigned char yuv_palette[PALETTE_SIZE]; yuv_planes_t yuv_planes; unsigned char *ghost_image; } fli_decoder_t; void decode_fli_frame(fli_decoder_t *this) { int stream_ptr = 0; int stream_ptr_after_color_chunk; int pixel_ptr; int palette_ptr1; int palette_ptr2; unsigned char palette_idx1; unsigned char palette_idx2; unsigned int frame_size; int num_chunks; unsigned int chunk_size; int chunk_type; int i, j; int color_packets; int color_changes; int color_shift; unsigned r, g, b; int lines, x; int compressed_lines; int starting_line; signed short line_packets; int y_ptr; signed char byte_run; int pixel_skip; int update_whole_frame = 0; /* palette change flag */ int ghost_pixel_ptr; int ghost_y_ptr; frame_size = LE_32(&this->buf[stream_ptr]); stream_ptr += 6; /* skip the magic number */ num_chunks = LE_16(&this->buf[stream_ptr]); stream_ptr += 10; /* skip padding */ /* iterate through the chunks */ frame_size -= 16; while ((frame_size > 0) && (num_chunks > 0)) { chunk_size = LE_32(&this->buf[stream_ptr]); stream_ptr += 4; chunk_type = LE_16(&this->buf[stream_ptr]); stream_ptr += 2; switch (chunk_type) { case FLI_256_COLOR: case FLI_COLOR: stream_ptr_after_color_chunk = stream_ptr + chunk_size - 6; if (chunk_type == FLI_COLOR) color_shift = 2; else color_shift = 0; /* set up the palette */ color_packets = LE_16(&this->buf[stream_ptr]); stream_ptr += 2; palette_ptr1 = 0; for (i = 0; i < color_packets; i++) { /* first byte is how many colors to skip */ palette_ptr1 += (this->buf[stream_ptr++] * 4); /* wrap around, for good measure */ if (palette_ptr1 >= PALETTE_SIZE) palette_ptr1 = 0; /* next byte indicates how many entries to change */ color_changes = this->buf[stream_ptr++]; /* if there are 0 color changes, there are actually 256 */ if (color_changes == 0) color_changes = 256; for (j = 0; j < color_changes; j++) { r = this->buf[stream_ptr + 0] << color_shift; g = this->buf[stream_ptr + 1] << color_shift; b = this->buf[stream_ptr + 2] << color_shift; this->yuv_palette[palette_ptr1++] = COMPUTE_Y(r,g, b); this->yuv_palette[palette_ptr1++] = COMPUTE_U(r,g, b); this->yuv_palette[palette_ptr1++] = COMPUTE_V(r,g, b); palette_ptr1++; stream_ptr += 3; } } /* color chunks sometimes have weird 16-bit alignment issues; * therefore, take the hardline approach and set the stream_ptr * to the value calculate w.r.t. the size specified by the color * chunk header */ stream_ptr = stream_ptr_after_color_chunk; /* palette has changed, must update frame */ update_whole_frame = 1; break; case FLI_DELTA: y_ptr = ghost_y_ptr = 0; compressed_lines = LE_16(&this->buf[stream_ptr]); stream_ptr += 2; while (compressed_lines > 0) { line_packets = LE_16(&this->buf[stream_ptr]); stream_ptr += 2; if (line_packets < 0) { line_packets = -line_packets; y_ptr += (line_packets * this->yuv_planes.row_width); ghost_y_ptr += (line_packets * this->width); } else { pixel_ptr = y_ptr; ghost_pixel_ptr = ghost_y_ptr; for (i = 0; i < line_packets; i++) { /* account for the skip bytes */ pixel_skip = this->buf[stream_ptr++]; pixel_ptr += pixel_skip; ghost_pixel_ptr += pixel_skip; byte_run = this->buf[stream_ptr++]; if (byte_run < 0) { byte_run = -byte_run; palette_ptr1 = (palette_idx1 = this->buf[stream_ptr++]) * 4; palette_ptr2 = (palette_idx2 = this->buf[stream_ptr++]) * 4; for (j = 0; j < byte_run; j++) { this->ghost_image[ghost_pixel_ptr++] = palette_idx1; this->yuv_planes.y[pixel_ptr] = this->yuv_palette[palette_ptr1 + 0]; this->yuv_planes.u[pixel_ptr] = this->yuv_palette[palette_ptr1 + 1]; this->yuv_planes.v[pixel_ptr] = this->yuv_palette[palette_ptr1 + 2]; pixel_ptr++; this->ghost_image[ghost_pixel_ptr++] = palette_idx2; this->yuv_planes.y[pixel_ptr] = this->yuv_palette[palette_ptr2 + 0]; this->yuv_planes.u[pixel_ptr] = this->yuv_palette[palette_ptr2 + 1]; this->yuv_planes.v[pixel_ptr] = this->yuv_palette[palette_ptr2 + 2]; pixel_ptr++; } } else { for (j = 0; j < byte_run * 2; j++) { palette_ptr1 = (palette_idx1 = this->buf[stream_ptr++]) * 4; this->ghost_image[ghost_pixel_ptr++] = palette_idx1; this->yuv_planes.y[pixel_ptr] = this->yuv_palette[palette_ptr1 + 0]; this->yuv_planes.u[pixel_ptr] = this->yuv_palette[palette_ptr1 + 1]; this->yuv_planes.v[pixel_ptr] = this->yuv_palette[palette_ptr1 + 2]; pixel_ptr++; } } } y_ptr += this->yuv_planes.row_width; ghost_y_ptr += this->width; compressed_lines--; } } break; case FLI_LC: /* line compressed */ starting_line = LE_16(&this->buf[stream_ptr]); stream_ptr += 2; y_ptr = starting_line * this->yuv_planes.row_width; ghost_y_ptr = starting_line * this->width; compressed_lines = LE_16(&this->buf[stream_ptr]); stream_ptr += 2; while (compressed_lines > 0) { pixel_ptr = y_ptr; ghost_pixel_ptr = ghost_y_ptr; line_packets = this->buf[stream_ptr++]; if (line_packets > 0) { for (i = 0; i < line_packets; i++) { /* account for the skip bytes */ pixel_skip = this->buf[stream_ptr++]; pixel_ptr += pixel_skip; ghost_pixel_ptr += pixel_skip; byte_run = this->buf[stream_ptr++]; if (byte_run > 0) { for (j = 0; j < byte_run; j++) { palette_ptr1 = (palette_idx1 = this->buf[stream_ptr++]) * 4; this->ghost_image[ghost_pixel_ptr++] = palette_idx1; this->yuv_planes.y[pixel_ptr] = this->yuv_palette[palette_ptr1 + 0]; this->yuv_planes.u[pixel_ptr] = this->yuv_palette[palette_ptr1 + 1]; this->yuv_planes.v[pixel_ptr] = this->yuv_palette[palette_ptr1 + 2]; pixel_ptr++; } } else { byte_run = -byte_run; palette_ptr1 = (palette_idx1 = this->buf[stream_ptr++]) * 4; for (j = 0; j < byte_run; j++) { this->ghost_image[ghost_pixel_ptr++] = palette_idx1; this->yuv_planes.y[pixel_ptr] = this->yuv_palette[palette_ptr1 + 0]; this->yuv_planes.u[pixel_ptr] = this->yuv_palette[palette_ptr1 + 1]; this->yuv_planes.v[pixel_ptr] = this->yuv_palette[palette_ptr1 + 2]; pixel_ptr++; } } } } y_ptr += this->yuv_planes.row_width; ghost_y_ptr += this->width; compressed_lines--; } break; case FLI_BLACK: /* set the whole frame to color 0 (which is usually black) by * clearing the ghost image and trigger a full frame update */ memset(this->ghost_image, 0, this->width * this->height * sizeof(unsigned char)); update_whole_frame = 1; break; case FLI_BRUN: /* byte run compression */ y_ptr = 0; ghost_y_ptr = 0; for (lines = 0; lines < this->height; lines++) { pixel_ptr = y_ptr; ghost_pixel_ptr = ghost_y_ptr; line_packets = this->buf[stream_ptr++]; for (i = 0; i < line_packets; i++) { byte_run = this->buf[stream_ptr++]; if (byte_run > 0) { palette_ptr1 = (palette_idx1 = this->buf[stream_ptr++]) * 4; for (j = 0; j < byte_run; j++) { this->ghost_image[ghost_pixel_ptr++] = palette_idx1; this->yuv_planes.y[pixel_ptr] = this->yuv_palette[palette_ptr1 + 0]; this->yuv_planes.u[pixel_ptr] = this->yuv_palette[palette_ptr1 + 1]; this->yuv_planes.v[pixel_ptr] = this->yuv_palette[palette_ptr1 + 2]; pixel_ptr++; } } else { /* copy bytes if byte_run < 0 */ byte_run = -byte_run; for (j = 0; j < byte_run; j++) { palette_ptr1 = (palette_idx1 = this->buf[stream_ptr++]) * 4; this->ghost_image[ghost_pixel_ptr++] = palette_idx1; this->yuv_planes.y[pixel_ptr] = this->yuv_palette[palette_ptr1 + 0]; this->yuv_planes.u[pixel_ptr] = this->yuv_palette[palette_ptr1 + 1]; this->yuv_planes.v[pixel_ptr] = this->yuv_palette[palette_ptr1 + 2]; pixel_ptr++; } } } y_ptr += this->yuv_planes.row_width; ghost_y_ptr += this->width; } break; case FLI_COPY: /* copy the chunk (uncompressed frame) to the ghost image and * schedule the whole frame to be updated */ if (chunk_size - 6 > this->width * this->height) { printf( _("FLI: in chunk FLI_COPY : source data (%d bytes) bigger than" \ " image, skipping chunk\n"), chunk_size - 6); break; } else memcpy(this->ghost_image, &this->buf[stream_ptr], chunk_size - 6); stream_ptr += chunk_size - 6; update_whole_frame = 1; break; case FLI_MINI: /* some sort of a thumbnail? disregard this chunk... */ stream_ptr += chunk_size - 6; break; default: printf (_("FLI: Unrecognized chunk type: %d\n"), chunk_type); break; } frame_size -= chunk_size; num_chunks--; } if (update_whole_frame) { pixel_ptr = ghost_pixel_ptr = 0; for (lines = 0; lines < this->height; lines++) { for (x = 0; x < this->width; x++) { palette_ptr1 = this->ghost_image[ghost_pixel_ptr++] * 4; this->yuv_planes.y[pixel_ptr] = this->yuv_palette[palette_ptr1 + 0]; this->yuv_planes.u[pixel_ptr] = this->yuv_palette[palette_ptr1 + 1]; this->yuv_planes.v[pixel_ptr] = this->yuv_palette[palette_ptr1 + 2]; pixel_ptr++; } pixel_ptr += 2; } } /* by the end of the chunk, the stream ptr should equal the frame * size (minus 1, possibly); if it doesn't, issue a warning */ if ((stream_ptr != this->size) && (stream_ptr != this->size - 1)) printf ( _(" warning: processed FLI chunk where chunk size = %d\n" \ " and final chunk ptr = %d\n"), this->size, stream_ptr); } /************************************************************************** * xine video plugin functions *************************************************************************/ static int fli_can_handle (video_decoder_t *this_gen, int buf_type) { return (buf_type == BUF_VIDEO_FLI); } /* * This function is responsible is called to initialize the video decoder * for use. Initialization usually involves setting up the fields in your * private video decoder object. */ static void fli_init (video_decoder_t *this_gen, vo_instance_t *video_out) { fli_decoder_t *this = (fli_decoder_t *) this_gen; /* set our own video_out object to the one that xine gives us */ this->video_out = video_out; /* indicate that the decoder is not quite ready yet */ this->decoder_ok = 0; } /* * This function receives a buffer of data from the demuxer layer and * figures out how to handle it based on its header flags. */ static void fli_decode_data (video_decoder_t *this_gen, buf_element_t *buf) { fli_decoder_t *this = (fli_decoder_t *) this_gen; vo_frame_t *img; /* video out frame */ /* a video decoder does not care about this flag (?) */ if (buf->decoder_flags & BUF_FLAG_PREVIEW) return; if (buf->decoder_flags & BUF_FLAG_HEADER) { /* need to initialize */ this->video_out->open (this->video_out); if(this->buf) free(this->buf); this->width = (LE_16(&buf->content[8]) + 3) & ~0x03; this->height = (LE_16(&buf->content[10]) + 3) & ~0x03; this->video_step = buf->decoder_info[1]; this->ghost_image = xine_xmalloc(this->width * this->height); init_yuv_planes(&this->yuv_planes, this->width, this->height); if (this->buf) free (this->buf); this->bufsize = VIDEOBUFSIZE; this->buf = malloc(this->bufsize); this->size = 0; this->video_out->open (this->video_out); this->decoder_ok = 1; return; } else if (this->decoder_ok) { if (this->size + buf->size > this->bufsize) { this->bufsize = this->size + 2 * buf->size; this->buf = realloc (this->buf, this->bufsize); } xine_fast_memcpy (&this->buf[this->size], buf->content, buf->size); this->size += buf->size; if (buf->decoder_flags & BUF_FLAG_FRAMERATE) this->video_step = buf->decoder_info[0]; if (buf->decoder_flags & BUF_FLAG_FRAME_END) { img = this->video_out->get_frame (this->video_out, this->width, this->height, 42, IMGFMT_YUY2, VO_BOTH_FIELDS); img->duration = this->video_step; img->pts = buf->pts; img->bad_frame = 0; decode_fli_frame(this); yuv444_to_yuy2(&this->yuv_planes, img->base[0], img->pitches[0]); if (img->copy) { int height = img->height; uint8_t *src[3]; src[0] = img->base[0]; while ((height -= 16) >= 0) { img->copy(img, src); src[0] += 16 * img->pitches[0]; } } img->draw(img); img->free(img); this->size = 0; } } } /* * This function is called when xine needs to flush the system. Not * sure when or if this is used or even if it needs to do anything. */ static void fli_flush (video_decoder_t *this_gen) { } /* * This function resets the video decoder. */ static void fli_reset (video_decoder_t *this_gen) { fli_decoder_t *this = (fli_decoder_t *) this_gen; this->size = 0; } /* * This function is called when xine shuts down the decoder. It should * free any memory and release any other resources allocated during the * execution of the decoder. */ static void fli_close (video_decoder_t *this_gen) { fli_decoder_t *this = (fli_decoder_t *) this_gen; if (this->buf) { free (this->buf); this->buf = NULL; } free_yuv_planes(&this->yuv_planes); free(this->ghost_image); if (this->decoder_ok) { this->decoder_ok = 0; this->video_out->close(this->video_out); } } /* * This function returns the human-readable ID string to identify * this decoder. */ static char *fli_get_id(void) { return "FLI Video"; } /* * This function frees the video decoder instance allocated to the decoder. */ static void fli_dispose (video_decoder_t *this_gen) { free (this_gen); } /* * This function should be the plugin's only advertised function to the * outside world. It allows xine to query the plugin module for the addresses * to the necessary functions in the video decoder object. The video * decoder object also has a priority field which allows different decoder * plugins for the same buffer types to coexist peacefully. The higher the * priority number, the more precedence a decoder has. E.g., 9 beats 1. */ video_decoder_t *init_video_decoder_plugin (int iface_version, xine_t *xine) { fli_decoder_t *this ; if (iface_version != 10) { printf( "fli: plugin doesn't support plugin API version %d.\n" "fli: this means there's a version mismatch between xine and this " "fli: decoder plugin.\nInstalling current plugins should help.\n", iface_version); return NULL; } this = (fli_decoder_t *) malloc (sizeof (fli_decoder_t)); memset(this, 0, sizeof (fli_decoder_t)); this->video_decoder.interface_version = iface_version; this->video_decoder.can_handle = fli_can_handle; this->video_decoder.init = fli_init; this->video_decoder.decode_data = fli_decode_data; this->video_decoder.flush = fli_flush; this->video_decoder.reset = fli_reset; this->video_decoder.close = fli_close; this->video_decoder.get_identifier = fli_get_id; this->video_decoder.dispose = fli_dispose; this->video_decoder.priority = 1; return (video_decoder_t *) this; }