/*============================================================================= * * This software has been released under the terms of the GNU Public * license. See http://www.gnu.org/copyleft/gpl.html for details. * * Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au * *============================================================================= */ /* Design and implementation of different types of digital filters */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include "dsp.h" /****************************************************************************** * FIR filter implementations ******************************************************************************/ /* C implementation of FIR filter y=w*x * * n number of filter taps, where mod(n,4)==0 * w filter taps * x input signal must be a circular buffer which is indexed backwards */ inline _ftype_t fir(register unsigned int n, _ftype_t* w, _ftype_t* x) { register _ftype_t y; /* Output */ y = 0.0; do{ n--; y+=w[n]*x[n]; }while(n != 0); return y; } /* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution) * * n number of filter taps, where mod(n,4)==0 * d number of filters * xi current index in xq * w filter taps k by n big * x input signal must be a circular buffers which are indexed backwards * y output buffer * s output buffer stride */ inline _ftype_t* pfir(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** w, _ftype_t** x, _ftype_t* y, unsigned int s) { register _ftype_t* xt = *x + xi; register _ftype_t* wt = *w; register int nt = 2*n; while(d-- > 0){ *y = fir(n,wt,xt); wt+=n; xt+=nt; y+=s; } return y; } /* Add new data to circular queue designed to be used with a parallel FIR filter, with d filters. xq is the circular queue, in pointing at the new samples, xi current index in xq and n the length of the filter. xq must be n*2 by k big, s is the index for in. */ inline int updatepq(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** xq, _ftype_t* in, unsigned int s) { register _ftype_t* txq = *xq + xi; register int nt = n*2; while(d-- >0){ *txq= *(txq+n) = *in; txq+=nt; in+=s; } return (++xi)&(n-1); } /****************************************************************************** * FIR filter design ******************************************************************************/ /* Design FIR filter using the Window method n filter length must be odd for HP and BS filters w buffer for the filter taps (must be n long) fc cutoff frequencies (1 for LP and HP, 2 for BP and BS) 0 < fc < 1 where 1 <=> Fs/2 flags window and filter type as defined in filter.h variables are ored together: i.e. LP|HAMMING will give a low pass filter designed using a hamming window opt beta constant used only when designing using kaiser windows returns 0 if OK, -1 if fail */ int design_fir(unsigned int n, _ftype_t* w, _ftype_t* fc, unsigned int flags, _ftype_t opt) { unsigned int o = n & 1; /* Indicator for odd filter length */ unsigned int end = ((n + 1) >> 1) - o; /* Loop end */ unsigned int i; /* Loop index */ _ftype_t k1 = 2 * M_PI; /* 2*pi*fc1 */ _ftype_t k2 = 0.5 * (_ftype_t)(1 - o);/* Constant used if the filter has even length */ _ftype_t k3; /* 2*pi*fc2 Constant used in BP and BS design */ _ftype_t g = 0.0; /* Gain */ _ftype_t t1,t2,t3; /* Temporary variables */ _ftype_t fc1,fc2; /* Cutoff frequencies */ /* Sanity check */ if(!w || (n == 0)) return -1; /* Get window coefficients */ switch(flags & WINDOW_MASK){ case(BOXCAR): boxcar(n,w); break; case(TRIANG): triang(n,w); break; case(HAMMING): hamming(n,w); break; case(HANNING): hanning(n,w); break; case(BLACKMAN): blackman(n,w); break; case(FLATTOP): flattop(n,w); break; case(KAISER): kaiser(n,w,opt); break; default: return -1; } if(flags & (LP | HP)){ fc1=*fc; /* Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2 */ fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25; k1 *= fc1; if(flags & LP){ /* Low pass filter */ /* * If the filter length is odd, there is one point which is exactly * in the middle. The value at this point is 2*fCutoff*sin(x)/x, * where x is zero. To make sure nothing strange happens, we set this * value separately. */ if (o){ w[end] = fc1 * w[end] * 2.0; g=w[end]; } /* Create filter */ for (i=0 ; i Fs/2 */ fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25; fc2 = ((fc2 <= 1.0) && (fc2 > 0.0)) ? fc2/2 : 0.25; k3 = k1 * fc2; /* 2*pi*fc2 */ k1 *= fc1; /* 2*pi*fc1 */ if(flags & BP){ /* Band pass */ /* Calculate center tap */ if (o){ g=w[end]*(fc1+fc2); w[end] = (fc2 - fc1) * w[end] * 2.0; } /* Create filter */ for (i=0 ; i HP filter * * returns 0 if OK, -1 if fail */ int design_pfir(unsigned int n, unsigned int k, _ftype_t* w, _ftype_t** pw, _ftype_t g, unsigned int flags) { int l = (int)n/k; /* Length of individual FIR filters */ int i; /* Counters */ int j; _ftype_t t; /* g * w[i] */ /* Sanity check */ if(l<1 || k<1 || !w || !pw) return -1; /* Do the stuff */ if(flags&REW){ for(j=l-1;j>-1;j--){ /* Columns */ for(i=0;i<(int)k;i++){ /* Rows */ t=g * *w++; pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? -1 : 1) : 1); } } } else{ for(j=0;j1000.0 || Q< 1.0)) return -1; memcpy(at,a,3*sizeof(_ftype_t)); memcpy(bt,b,3*sizeof(_ftype_t)); bt[1]/=Q; /* Calculate a and b and overwrite the original values */ prewarp(at, fc, fs); prewarp(bt, fc, fs); /* Execute bilinear transform */ bilinear(at, bt, k, fs, coef); return 0; }