/* * Copyright (C) 2008 Julian Scheel * * This file is part of xine, a free video player. * * xine is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * xine is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * h264_parser.c: Almost full-features H264 NAL-Parser */ #include #include #include #include "h264_parser.h" #include "nal.h" /* default scaling_lists according to Table 7-2 */ uint8_t default_4x4_intra[16] = { 6, 13, 13, 20, 20, 20, 28, 28, 28, 28, 32, 32, 32, 37, 37, 42 }; uint8_t default_4x4_inter[16] = { 10, 14, 14, 20, 20, 20, 24, 24, 24, 24, 27, 27, 27, 30, 30, 34 }; uint8_t default_8x8_intra[64] = { 6, 10, 10, 13, 11, 13, 16, 16, 16, 16, 18, 18, 18, 18, 18, 23, 23, 23, 23, 23, 23, 25, 25, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27, 27, 27, 27, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 33, 33, 33, 33, 33, 36, 36, 36, 36, 38, 38, 38, 40, 40, 42 }; uint8_t default_8x8_inter[64] = { 9, 13, 13, 15, 13, 15, 17, 17, 17, 17, 19, 19, 19, 19, 19, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 30, 30, 30, 30, 32, 32, 32, 33, 33, 35 }; struct buf_reader { uint8_t *buf; uint8_t *cur_pos; int len; int cur_offset; }; static inline uint32_t read_bits(struct buf_reader *buf, int len); uint32_t read_exp_golomb(struct buf_reader *buf); int32_t read_exp_golomb_s(struct buf_reader *buf); void calculate_pic_order(struct nal_parser *parser); void skip_scaling_list(struct buf_reader *buf, int size); void parse_scaling_list(struct buf_reader *buf, uint8_t *scaling_list, int length, int index); int parse_nal_header(struct buf_reader *buf, struct nal_parser *parser); static void sps_scaling_list_fallback(struct seq_parameter_set_rbsp *sps, int i); static void pps_scaling_list_fallback(struct seq_parameter_set_rbsp *sps, struct pic_parameter_set_rbsp *pps, int i); uint8_t parse_sps(struct buf_reader *buf, struct nal_parser *parser); void parse_vui_parameters(struct buf_reader *buf, struct seq_parameter_set_rbsp *sps); void parse_hrd_parameters(struct buf_reader *buf, struct hrd_parameters *hrd); uint8_t parse_pps(struct buf_reader *buf, struct pic_parameter_set_rbsp *pps, struct seq_parameter_set_rbsp *sps); void parse_sei(struct buf_reader *buf, struct nal_parser *parser); uint8_t parse_slice_header(struct buf_reader *buf, struct nal_parser *parser); void parse_ref_pic_list_reordering(struct buf_reader *buf, struct nal_unit *nal, struct nal_parser *parser); void decode_ref_pic_marking(struct nal_unit *nal, uint32_t memory_management_control_operation, uint32_t marking_nr, struct nal_parser *parser); void parse_pred_weight_table(struct buf_reader *buf, struct nal_unit *nal); void parse_dec_ref_pic_marking(struct buf_reader *buf, struct nal_parser *parser); /* here goes the parser implementation */ static void decode_nal(uint8_t **ret, int *len_ret, uint8_t *buf, int buf_len) { uint8_t *end = &buf[buf_len]; uint8_t *pos = malloc(buf_len); *ret = pos; while (buf < end) { if (buf < end - 3 && buf[0] == 0x00 && buf[1] == 0x00 && buf[2] == 0x03) { *pos++ = 0x00; *pos++ = 0x00; buf += 3; continue; } *pos++ = *buf++; } *len_ret = pos - *ret; } #if 0 static inline void dump_bits(const char *label, const struct buf_reader *buf, int bits) { struct buf_reader lbuf; memcpy(&lbuf, buf, sizeof(struct buf_reader)); int i; printf("%s: 0b", label); for(i=0; i < bits; i++) printf("%d", read_bits(&lbuf, 1)); printf("\n"); } #endif static inline uint32_t bits_read(struct buf_reader *buf) { int bits_read = 0; bits_read = (buf->cur_pos - buf->buf)*8; bits_read += (8-buf->cur_offset); return bits_read; } static inline uint32_t read_bits(struct buf_reader *buf, int len) { static uint32_t i_mask[33] = { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff, 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff, 0x1ffff, 0x3ffff, 0x7ffff, 0xfffff, 0x1fffff, 0x3fffff, 0x7fffff, 0xffffff, 0x1ffffff, 0x3ffffff, 0x7ffffff, 0xfffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff, 0xffffffff }; int i_shr; uint32_t bits = 0; while (len > 0 && (buf->cur_pos - buf->buf) < buf->len) { if ((i_shr = buf->cur_offset - len) >= 0) { bits |= (*buf->cur_pos >> i_shr) & i_mask[len]; buf->cur_offset -= len; if (buf->cur_offset == 0) { buf->cur_pos++; buf->cur_offset = 8; } return bits; } else { bits |= (*buf->cur_pos & i_mask[buf->cur_offset]) << -i_shr; len -= buf->cur_offset; buf->cur_pos++; buf->cur_offset = 8; } } return bits; } /* determines if following bits are rtsb_trailing_bits */ static inline int rbsp_trailing_bits(uint8_t *buf, int buf_len) { uint8_t *cur_buf = buf+(buf_len-1); uint8_t cur_val; int parsed_bits = 0; int i; while(buf_len > 0) { cur_val = *cur_buf; for(i = 0; i < 9; i++) { if (cur_val&1) return parsed_bits+i; cur_val>>=1; } parsed_bits += 8; cur_buf--; } printf("rbsp trailing bits could not be found\n"); return 0; } uint32_t read_exp_golomb(struct buf_reader *buf) { int leading_zero_bits = 0; while (read_bits(buf, 1) == 0 && leading_zero_bits < 32) leading_zero_bits++; uint32_t code = (1 << leading_zero_bits) - 1 + read_bits(buf, leading_zero_bits); return code; } int32_t read_exp_golomb_s(struct buf_reader *buf) { uint32_t ue = read_exp_golomb(buf); int32_t code = ue & 0x01 ? (ue + 1) / 2 : -(ue / 2); return code; } int parse_nal_header(struct buf_reader *buf, struct nal_parser *parser) { if (buf->len < 1) return -1; int ret = -1; struct nal_unit *nal = parser->current_nal; memset(nal, 0x00, sizeof(struct nal_unit) - sizeof(struct seq_parameter_set_rbsp*) - sizeof(struct pic_parameter_set_rbsp*) - sizeof(struct slice_header*)); nal->nal_ref_idc = (buf->buf[0] >> 5) & 0x03; nal->nal_unit_type = buf->buf[0] & 0x1f; buf->cur_pos = buf->buf + 1; //printf("NAL: %d\n", nal->nal_unit_type); struct buf_reader ibuf; ibuf.cur_offset = 8; switch (nal->nal_unit_type) { case NAL_SPS: decode_nal(&ibuf.buf, &ibuf.len, buf->cur_pos, buf->len - 1); ibuf.cur_pos = ibuf.buf; if (!nal->sps) nal->sps = calloc(1, sizeof(struct seq_parameter_set_rbsp)); else memset(nal->sps, 0x00, sizeof(struct seq_parameter_set_rbsp)); parse_sps(&ibuf, parser); free(ibuf.buf); ret = NAL_SPS; break; case NAL_PPS: if (!nal->pps) nal->pps = calloc(1, sizeof(struct pic_parameter_set_rbsp)); else memset(nal->pps, 0x00, sizeof(struct pic_parameter_set_rbsp)); parse_pps(buf, nal->pps, nal->sps); ret = NAL_PPS; break; case NAL_SLICE: case NAL_PART_A: case NAL_PART_B: case NAL_PART_C: case NAL_SLICE_IDR: if (nal->sps && nal->pps) { if (!nal->slc) nal->slc = calloc(1, sizeof(struct slice_header)); else memset(nal->slc, 0x00, sizeof(struct slice_header)); parse_slice_header(buf, parser); ret = nal->nal_unit_type; } break; case NAL_SEI: memset(&(nal->sei), 0x00, sizeof(struct sei_message)); parse_sei(buf, parser); ret = nal->nal_unit_type; break; default: ret = nal->nal_unit_type; break; } return ret; } void calculate_pic_order(struct nal_parser *parser) { struct nal_unit *nal = parser->current_nal; struct seq_parameter_set_rbsp *sps = nal->sps; struct slice_header *slc = nal->slc; if (!sps || !slc) return; if (nal->nal_unit_type == NAL_SLICE_IDR) { parser->prev_pic_order_cnt_lsb = 0; parser->prev_pic_order_cnt_msb = 0; parser->frame_num_offset = 0; } if (sps->pic_order_cnt_type == 0) { const int max_poc_lsb = 1 << (sps->log2_max_pic_order_cnt_lsb_minus4 + 4); if (slc->pic_order_cnt_lsb < parser->prev_pic_order_cnt_lsb && parser->prev_pic_order_cnt_lsb - slc->pic_order_cnt_lsb >= max_poc_lsb / 2) parser->pic_order_cnt_msb = parser->prev_pic_order_cnt_msb + max_poc_lsb; else if (slc->pic_order_cnt_lsb > parser->prev_pic_order_cnt_lsb && parser->prev_pic_order_cnt_lsb - slc->pic_order_cnt_lsb < -max_poc_lsb / 2) parser->pic_order_cnt_msb = parser->prev_pic_order_cnt_msb - max_poc_lsb; else parser->pic_order_cnt_msb = parser->prev_pic_order_cnt_msb; if(!slc->field_pic_flag || !slc->bottom_field_flag) nal->top_field_order_cnt = parser->pic_order_cnt_msb + slc->pic_order_cnt_lsb; nal->bottom_field_order_cnt = 0; if(!slc->field_pic_flag) nal->bottom_field_order_cnt = nal->top_field_order_cnt + slc->delta_pic_order_cnt_bottom; else //if(slc->bottom_field_flag) TODO: this is not spec compliant, but works... nal->bottom_field_order_cnt = parser->pic_order_cnt_msb + slc->pic_order_cnt_lsb; /*if(slc->bottom_field_flag) nal->top_field_order_cnt = parser->last_nal->top_field_order_cnt;*/ } else if (sps->pic_order_cnt_type == 2) { uint32_t prev_frame_num = parser->last_nal->slc->frame_num; uint32_t prev_frame_num_offset = parser->frame_num_offset; uint32_t max_frame_num = 1 << (sps->log2_max_frame_num_minus4+4); uint32_t temp_pic_order_cnt = 0; if (parser->is_idr) parser->frame_num_offset = 0; else if (prev_frame_num > slc->frame_num) parser->frame_num_offset = prev_frame_num_offset + max_frame_num; else parser->frame_num_offset = prev_frame_num_offset; if(parser->is_idr) temp_pic_order_cnt = 0; else if(nal->nal_ref_idc == 0) temp_pic_order_cnt = 2 * (parser->frame_num_offset + slc->frame_num)-1; else temp_pic_order_cnt = 2 * (parser->frame_num_offset + slc->frame_num); if(!slc->field_pic_flag) nal->top_field_order_cnt = nal->bottom_field_order_cnt = temp_pic_order_cnt; else if(slc->bottom_field_flag) nal->bottom_field_order_cnt = temp_pic_order_cnt; else nal->top_field_order_cnt = temp_pic_order_cnt; } else { printf("FIXME: Unsupported poc_type: %d\n", sps->pic_order_cnt_type); } } void skip_scaling_list(struct buf_reader *buf, int size) { int i; for (i = 0; i < size; i++) { read_exp_golomb_s(buf); } } void parse_scaling_list(struct buf_reader *buf, uint8_t *scaling_list, int length, int index) { int last_scale = 8; int next_scale = 8; int32_t delta_scale; uint8_t use_default_scaling_matrix_flag = 0; int i; uint8_t *zigzag = (length==64) ? zigzag_8x8 : zigzag_4x4; for (i = 0; i < length; i++) { if (next_scale != 0) { delta_scale = read_exp_golomb_s(buf); next_scale = (last_scale + delta_scale + 256) % 256; if (i == 0 && next_scale == 0) { use_default_scaling_matrix_flag = 1; break; } } scaling_list[zigzag[i]] = last_scale = (next_scale == 0) ? last_scale : next_scale; } if (use_default_scaling_matrix_flag) { switch (index) { case 0: case 1: case 2: { for(i = 0; i < sizeof(default_4x4_intra); i++) { scaling_list[zigzag_4x4[i]] = default_4x4_intra[i]; } //memcpy(scaling_list, default_4x4_intra, sizeof(default_4x4_intra)); break; } case 3: case 4: case 5: { for(i = 0; i < sizeof(default_4x4_inter); i++) { scaling_list[zigzag_4x4[i]] = default_4x4_inter[i]; } //memcpy(scaling_list, default_4x4_inter, sizeof(default_4x4_inter)); break; } case 6: { for(i = 0; i < sizeof(default_8x8_intra); i++) { scaling_list[zigzag_8x8[i]] = default_8x8_intra[i]; } //memcpy(scaling_list, default_8x8_intra, sizeof(default_8x8_intra)); break; } case 7: { for(i = 0; i < sizeof(default_8x8_inter); i++) { scaling_list[zigzag_8x8[i]] = default_8x8_inter[i]; } //memcpy(scaling_list, default_8x8_inter, sizeof(default_8x8_inter)); break; } } } } static void sps_scaling_list_fallback(struct seq_parameter_set_rbsp *sps, int i) { int j; switch (i) { case 0: { for(j = 0; j < sizeof(default_4x4_intra); j++) { sps->scaling_lists_4x4[i][zigzag_4x4[j]] = default_4x4_intra[j]; } //memcpy(sps->scaling_lists_4x4[i], default_4x4_intra, sizeof(sps->scaling_lists_4x4[i])); break; } case 3: { for(j = 0; j < sizeof(default_4x4_inter); j++) { sps->scaling_lists_4x4[i][zigzag_4x4[j]] = default_4x4_inter[j]; } //memcpy(sps->scaling_lists_4x4[i], default_4x4_inter, sizeof(sps->scaling_lists_4x4[i])); break; } case 1: case 2: case 4: case 5: memcpy(sps->scaling_lists_4x4[i], sps->scaling_lists_4x4[i-1], sizeof(sps->scaling_lists_4x4[i])); break; case 6: { for(j = 0; j < sizeof(default_8x8_intra); j++) { sps->scaling_lists_8x8[i-6][zigzag_8x8[j]] = default_8x8_intra[j]; } //memcpy(sps->scaling_lists_8x8[i-6], default_8x8_intra, sizeof(sps->scaling_lists_8x8[i-6])); break; } case 7: { for(j = 0; j < sizeof(default_8x8_inter); j++) { sps->scaling_lists_8x8[i-6][zigzag_8x8[j]] = default_8x8_inter[j]; } //memcpy(sps->scaling_lists_8x8[i-6], default_8x8_inter, sizeof(sps->scaling_lists_8x8[i-6])); break; } } } static void pps_scaling_list_fallback(struct seq_parameter_set_rbsp *sps, struct pic_parameter_set_rbsp *pps, int i) { switch (i) { case 0: case 3: memcpy(pps->scaling_lists_4x4[i], sps->scaling_lists_4x4[i], sizeof(pps->scaling_lists_4x4[i])); break; case 1: case 2: case 4: case 5: memcpy(pps->scaling_lists_4x4[i], pps->scaling_lists_4x4[i-1], sizeof(pps->scaling_lists_4x4[i])); break; case 6: case 7: memcpy(pps->scaling_lists_8x8[i-6], sps->scaling_lists_8x8[i-6], sizeof(pps->scaling_lists_8x8[i-6])); break; } } uint8_t parse_sps(struct buf_reader *buf, struct nal_parser *parser) { struct seq_parameter_set_rbsp *sps = parser->current_nal->sps; sps->profile_idc = read_bits(buf, 8); sps->constraint_setN_flag = read_bits(buf, 4); read_bits(buf, 4); sps->level_idc = read_bits(buf, 8); sps->seq_parameter_set_id = read_exp_golomb(buf); memset(sps->scaling_lists_4x4, 16, sizeof(sps->scaling_lists_4x4)); memset(sps->scaling_lists_8x8, 16, sizeof(sps->scaling_lists_8x8)); if (sps->profile_idc == 100 || sps->profile_idc == 110 || sps->profile_idc == 122 || sps->profile_idc == 244 || sps->profile_idc == 44 || sps->profile_idc == 83 || sps->profile_idc == 86) { sps->chroma_format_idc = read_exp_golomb(buf); if (sps->chroma_format_idc == 3) { sps->separate_colour_plane_flag = read_bits(buf, 1); } sps->bit_depth_luma_minus8 = read_exp_golomb(buf); sps->bit_depth_chroma_minus8 = read_exp_golomb(buf); sps->qpprime_y_zero_transform_bypass_flag = read_bits(buf, 1); sps->seq_scaling_matrix_present_flag = read_bits(buf, 1); if (sps->seq_scaling_matrix_present_flag) { int i; for (i = 0; i < 8; i++) { sps->seq_scaling_list_present_flag[i] = read_bits(buf, 1); if (sps->seq_scaling_list_present_flag[i]) { if (i < 6) parse_scaling_list(buf, sps->scaling_lists_4x4[i], 16, i); else parse_scaling_list(buf, sps->scaling_lists_8x8[i - 6], 64, i); } else { sps_scaling_list_fallback(sps, i); } } } } else sps->chroma_format_idc = 1; sps->log2_max_frame_num_minus4 = read_exp_golomb(buf); sps->pic_order_cnt_type = read_exp_golomb(buf); if (!sps->pic_order_cnt_type) sps->log2_max_pic_order_cnt_lsb_minus4 = read_exp_golomb(buf); else if(sps->pic_order_cnt_type == 1) { sps->delta_pic_order_always_zero_flag = read_bits(buf, 1); sps->offset_for_non_ref_pic = read_exp_golomb_s(buf); sps->offset_for_top_to_bottom_field = read_exp_golomb_s(buf); sps->num_ref_frames_in_pic_order_cnt_cycle = read_exp_golomb(buf); int i; for (i = 0; i < sps->num_ref_frames_in_pic_order_cnt_cycle; i++) { sps->offset_for_ref_frame[i] = read_exp_golomb_s(buf); } } sps->num_ref_frames = read_exp_golomb(buf); sps->gaps_in_frame_num_value_allowed_flag = read_bits(buf, 1); /*sps->pic_width_in_mbs_minus1 = read_exp_golomb(buf); sps->pic_height_in_map_units_minus1 = read_exp_golomb(buf);*/ sps->pic_width = 16 * (read_exp_golomb(buf) + 1); sps->pic_height = 16 * (read_exp_golomb(buf) + 1); sps->frame_mbs_only_flag = read_bits(buf, 1); /* compute the height correctly even for interlaced material */ sps->pic_height = (2 - sps->frame_mbs_only_flag) * sps->pic_height; if (sps->pic_height == 1088) sps->pic_height = 1080; if (!sps->frame_mbs_only_flag) sps->mb_adaptive_frame_field_flag = read_bits(buf, 1); sps->direct_8x8_inference_flag = read_bits(buf, 1); sps->frame_cropping_flag = read_bits(buf, 1); if (sps->frame_cropping_flag) { sps->frame_crop_left_offset = read_exp_golomb(buf); sps->frame_crop_right_offset = read_exp_golomb(buf); sps->frame_crop_top_offset = read_exp_golomb(buf); sps->frame_crop_bottom_offset = read_exp_golomb(buf); } sps->vui_parameters_present_flag = read_bits(buf, 1); if (sps->vui_parameters_present_flag) { parse_vui_parameters(buf, sps); if(sps->vui_parameters.nal_hrd_parameters_present_flag || sps->vui_parameters.vc1_hrd_parameters_present_flag) { parser->cpb_dpb_delays_present_flag = 1; } else parser->cpb_dpb_delays_present_flag = 0; } else parser->cpb_dpb_delays_present_flag = 0; return 0; } void parse_sei(struct buf_reader *buf, struct nal_parser *parser) { struct sei_message *sei = &(parser->current_nal->sei); struct seq_parameter_set_rbsp *sps = parser->current_nal->sps; uint8_t tmp; sei->payload_type = 0; while((tmp = read_bits(buf, 8)) == 0xff) { sei->payload_type += 255; } sei->last_payload_type_byte = tmp; sei->payload_type += sei->last_payload_type_byte; sei->payload_size = 0; while((tmp = read_bits(buf, 8)) == 0xff) { sei->payload_size += 255; } sei->last_payload_size_byte = tmp; sei->payload_size += sei->last_payload_size_byte; /* pic_timing */ if(sei->payload_type == 1) { if(parser->cpb_dpb_delays_present_flag) { sei->pic_timing.cpb_removal_delay = read_bits(buf, 5); sei->pic_timing.dpb_output_delay = read_bits(buf, 5); } if(sps && sps->vui_parameters_present_flag && sps->vui_parameters.pic_struct_present_flag) { sei->pic_timing.pic_struct = read_bits(buf, 4); switch(sei->pic_timing.pic_struct) { case DISP_FRAME: parser->current_nal->interlaced = 0; parser->current_nal->repeat_pic = 0; break; case DISP_TOP: case DISP_BOTTOM: case DISP_TOP_BOTTOM: case DISP_BOTTOM_TOP: parser->current_nal->interlaced = 1; break; case DISP_TOP_BOTTOM_TOP: case DISP_BOTTOM_TOP_BOTTOM: parser->current_nal->interlaced = 1; parser->current_nal->repeat_pic = 1; break; case DISP_FRAME_DOUBLING: parser->current_nal->interlaced = 0; parser->current_nal->repeat_pic = 2; break; case DISP_FRAME_TRIPLING: parser->current_nal->interlaced = 0; parser->current_nal->repeat_pic = 3; } } } } void parse_vui_parameters(struct buf_reader *buf, struct seq_parameter_set_rbsp *sps) { sps->vui_parameters.aspect_ration_info_present_flag = read_bits(buf, 1); if (sps->vui_parameters.aspect_ration_info_present_flag == 1) { sps->vui_parameters.aspect_ratio_idc = read_bits(buf, 8); if (sps->vui_parameters.aspect_ratio_idc == ASPECT_EXTENDED_SAR) { sps->vui_parameters.sar_width = read_bits(buf, 16); sps->vui_parameters.sar_height = read_bits(buf, 16); } } sps->vui_parameters.overscan_info_present_flag = read_bits(buf, 1); if (sps->vui_parameters.overscan_info_present_flag) { sps->vui_parameters.overscan_appropriate_flag = read_bits(buf, 1); } sps->vui_parameters.video_signal_type_present_flag = read_bits(buf, 1); if (sps->vui_parameters.video_signal_type_present_flag) { sps->vui_parameters.video_format = read_bits(buf, 3); sps->vui_parameters.video_full_range_flag = read_bits(buf, 1); sps->vui_parameters.colour_description_present = read_bits(buf, 1); if (sps->vui_parameters.colour_description_present) { sps->vui_parameters.colour_primaries = read_bits(buf, 8); sps->vui_parameters.transfer_characteristics = read_bits(buf, 8); sps->vui_parameters.matrix_coefficients = read_bits(buf, 8); } } sps->vui_parameters.chroma_loc_info_present_flag = read_bits(buf, 1); if (sps->vui_parameters.chroma_loc_info_present_flag) { sps->vui_parameters.chroma_sample_loc_type_top_field = read_exp_golomb(buf); sps->vui_parameters.chroma_sample_loc_type_bottom_field = read_exp_golomb( buf); } sps->vui_parameters.timing_info_present_flag = read_bits(buf, 1); if (sps->vui_parameters.timing_info_present_flag) { uint32_t num_units_in_tick = read_bits(buf, 32); uint32_t time_scale = read_bits(buf, 32); sps->vui_parameters.num_units_in_tick = num_units_in_tick; sps->vui_parameters.time_scale = time_scale; sps->vui_parameters.fixed_frame_rate_flag = read_bits(buf, 1); } sps->vui_parameters.nal_hrd_parameters_present_flag = read_bits(buf, 1); if (sps->vui_parameters.nal_hrd_parameters_present_flag) parse_hrd_parameters(buf, &sps->vui_parameters.nal_hrd_parameters); sps->vui_parameters.vc1_hrd_parameters_present_flag = read_bits(buf, 1); if (sps->vui_parameters.vc1_hrd_parameters_present_flag) parse_hrd_parameters(buf, &sps->vui_parameters.vc1_hrd_parameters); if (sps->vui_parameters.nal_hrd_parameters_present_flag || sps->vui_parameters.vc1_hrd_parameters_present_flag) sps->vui_parameters.low_delay_hrd_flag = read_bits(buf, 1); sps->vui_parameters.pic_struct_present_flag = read_bits(buf, 1); sps->vui_parameters.bitstream_restriction_flag = read_bits(buf, 1); if (sps->vui_parameters.bitstream_restriction_flag) { sps->vui_parameters.motion_vectors_over_pic_boundaries = read_bits(buf, 1); sps->vui_parameters.max_bytes_per_pic_denom = read_exp_golomb(buf); sps->vui_parameters.max_bits_per_mb_denom = read_exp_golomb(buf); sps->vui_parameters.log2_max_mv_length_horizontal = read_exp_golomb(buf); sps->vui_parameters.log2_max_mv_length_vertical = read_exp_golomb(buf); sps->vui_parameters.num_reorder_frames = read_exp_golomb(buf); sps->vui_parameters.max_dec_frame_buffering = read_exp_golomb(buf); } } void parse_hrd_parameters(struct buf_reader *buf, struct hrd_parameters *hrd) { hrd->cpb_cnt_minus1 = read_exp_golomb(buf); hrd->bit_rate_scale = read_bits(buf, 4); hrd->cpb_size_scale = read_bits(buf, 4); int i; for (i = 0; i <= hrd->cpb_cnt_minus1; i++) { hrd->bit_rate_value_minus1[i] = read_exp_golomb(buf); hrd->cpb_size_value_minus1[i] = read_exp_golomb(buf); hrd->cbr_flag[i] = read_bits(buf, 1); } hrd->initial_cpb_removal_delay_length_minus1 = read_bits(buf, 5); hrd->cpb_removal_delay_length_minus1 = read_bits(buf, 5); hrd->dpb_output_delay_length_minus1 = read_bits(buf, 5); hrd->time_offset_length = read_bits(buf, 5); } uint8_t parse_pps(struct buf_reader *buf, struct pic_parameter_set_rbsp *pps, struct seq_parameter_set_rbsp *sps) { pps->pic_parameter_set_id = read_exp_golomb(buf); pps->seq_parameter_set_id = read_exp_golomb(buf); pps->entropy_coding_mode_flag = read_bits(buf, 1); pps->pic_order_present_flag = read_bits(buf, 1); pps->num_slice_groups_minus1 = read_exp_golomb(buf); if (pps->num_slice_groups_minus1 > 0) { pps->slice_group_map_type = read_exp_golomb(buf); if (pps->slice_group_map_type == 0) { int i_group; for (i_group = 0; i_group <= pps->num_slice_groups_minus1; i_group++) { if (i_group < 64) pps->run_length_minus1[i_group] = read_exp_golomb(buf); else { // FIXME: skips if more than 64 groups exist fprintf(stderr, "Error: Only 64 slice_groups are supported\n"); read_exp_golomb(buf); } } } else if (pps->slice_group_map_type == 3 || pps->slice_group_map_type == 4 || pps->slice_group_map_type == 5) { pps->slice_group_change_direction_flag = read_bits(buf, 1); pps->slice_group_change_rate_minus1 = read_exp_golomb(buf); } else if (pps->slice_group_map_type == 6) { pps->pic_size_in_map_units_minus1 = read_exp_golomb(buf); int i_group; for (i_group = 0; i_group <= pps->num_slice_groups_minus1; i_group++) { pps->slice_group_id[i_group] = read_bits(buf, ceil(log( pps->num_slice_groups_minus1 + 1))); } } } pps->num_ref_idx_l0_active_minus1 = read_exp_golomb(buf); pps->num_ref_idx_l1_active_minus1 = read_exp_golomb(buf); pps->weighted_pred_flag = read_bits(buf, 1); pps->weighted_bipred_idc = read_bits(buf, 2); pps->pic_init_qp_minus26 = read_exp_golomb_s(buf); pps->pic_init_qs_minus26 = read_exp_golomb_s(buf); pps->chroma_qp_index_offset = read_exp_golomb_s(buf); pps->deblocking_filter_control_present_flag = read_bits(buf, 1); pps->constrained_intra_pred_flag = read_bits(buf, 1); pps->redundant_pic_cnt_present_flag = read_bits(buf, 1); int bit_length = (buf->len*8)-rbsp_trailing_bits(buf->buf, buf->len); int bit_read = bits_read(buf); memset(pps->scaling_lists_4x4, 16, sizeof(pps->scaling_lists_4x4)); memset(pps->scaling_lists_8x8, 16, sizeof(pps->scaling_lists_8x8)); if (bit_length-bit_read > 1) { pps->transform_8x8_mode_flag = read_bits(buf, 1); pps->pic_scaling_matrix_present_flag = read_bits(buf, 1); if (pps->pic_scaling_matrix_present_flag) { int i; for (i = 0; i < 8; i++) { if(i < 6 || pps->transform_8x8_mode_flag) pps->pic_scaling_list_present_flag[i] = read_bits(buf, 1); else pps->pic_scaling_list_present_flag[i] = 0; if (pps->pic_scaling_list_present_flag[i]) { if (i < 6) parse_scaling_list(buf, pps->scaling_lists_4x4[i], 16, i); else parse_scaling_list(buf, pps->scaling_lists_8x8[i - 6], 64, i); } else { pps_scaling_list_fallback(sps, pps, i); } } } pps->second_chroma_qp_index_offset = read_exp_golomb_s(buf); } else pps->second_chroma_qp_index_offset = pps->chroma_qp_index_offset; if (!pps->pic_scaling_matrix_present_flag && sps != NULL) { memcpy(pps->scaling_lists_4x4, sps->scaling_lists_4x4, sizeof(pps->scaling_lists_4x4)); memcpy(pps->scaling_lists_8x8, sps->scaling_lists_8x8, sizeof(pps->scaling_lists_8x8)); } return 0; } uint8_t parse_slice_header(struct buf_reader *buf, struct nal_parser *parser) { struct nal_unit *nal = parser->current_nal; struct seq_parameter_set_rbsp *sps = nal->sps; struct pic_parameter_set_rbsp *pps = nal->pps; struct slice_header *slc = nal->slc; memset(slc, 0x00, sizeof(struct slice_header)); if (!sps || !pps) return -1; slc->first_mb_in_slice = read_exp_golomb(buf); /* we do some parsing on the slice type, because the list is doubled */ slc->slice_type = slice_type(read_exp_golomb(buf)); //print_slice_type(slc->slice_type); slc->pic_parameter_set_id = read_exp_golomb(buf); if(sps->separate_colour_plane_flag) slc->colour_plane_id = read_bits(buf, 2); slc->frame_num = read_bits(buf, sps->log2_max_frame_num_minus4 + 4); if (!sps->frame_mbs_only_flag) { slc->field_pic_flag = read_bits(buf, 1); if (slc->field_pic_flag) slc->bottom_field_flag = read_bits(buf, 1); else slc->bottom_field_flag = 0; } else { slc->field_pic_flag = 0; slc->bottom_field_flag = 0; } if (slc->field_pic_flag == 0) { nal->max_pic_num = 1 << (sps->log2_max_frame_num_minus4+4); nal->curr_pic_num = slc->frame_num; } else { nal->curr_pic_num = 2 * slc->frame_num + 1; nal->max_pic_num = 2 * (1 << (sps->log2_max_frame_num_minus4+4)); } if (nal->nal_unit_type == NAL_SLICE_IDR) slc->idr_pic_id = read_exp_golomb(buf); if (!sps->pic_order_cnt_type) { slc->pic_order_cnt_lsb = read_bits(buf, sps->log2_max_pic_order_cnt_lsb_minus4 + 4); if (pps->pic_order_present_flag && !slc->field_pic_flag) slc->delta_pic_order_cnt_bottom = read_exp_golomb_s(buf); } if (sps->pic_order_cnt_type == 1 && !sps->delta_pic_order_always_zero_flag) { slc->delta_pic_order_cnt[0] = read_exp_golomb_s(buf); if (pps->pic_order_present_flag && !slc->field_pic_flag) slc->delta_pic_order_cnt[1] = read_exp_golomb_s(buf); } if (pps->redundant_pic_cnt_present_flag == 1) { slc->redundant_pic_cnt = read_exp_golomb(buf); } if (slc->slice_type == SLICE_B) slc->direct_spatial_mv_pred_flag = read_bits(buf, 1); /* take default values in case they are not set here */ slc->num_ref_idx_l0_active_minus1 = pps->num_ref_idx_l0_active_minus1; slc->num_ref_idx_l1_active_minus1 = pps->num_ref_idx_l1_active_minus1; if (slc->slice_type == SLICE_P || slc->slice_type == SLICE_SP || slc->slice_type == SLICE_B) { slc->num_ref_idx_active_override_flag = read_bits(buf, 1); if (slc->num_ref_idx_active_override_flag == 1) { slc->num_ref_idx_l0_active_minus1 = read_exp_golomb(buf); if (slc->slice_type == SLICE_B) { slc->num_ref_idx_l1_active_minus1 = read_exp_golomb(buf); } } } /* --- ref_pic_list_reordering --- */ parse_ref_pic_list_reordering(buf, nal, parser); /* --- pred_weight_table --- */ if ((pps->weighted_pred_flag && (slc->slice_type == SLICE_P || slc->slice_type == SLICE_SP)) || (pps->weighted_bipred_idc == 1 && slc->slice_type == SLICE_B)) { parse_pred_weight_table(buf, nal); } /* --- dec_ref_pic_marking --- */ if (nal->nal_ref_idc != 0) parse_dec_ref_pic_marking(buf, parser); else slc->dec_ref_pic_marking_count = 0; return 0; } void parse_ref_pic_list_reordering(struct buf_reader *buf, struct nal_unit *nal, struct nal_parser *parser) { struct slice_header *slc = nal->slc; if (slc->slice_type != SLICE_I && slc->slice_type != SLICE_SI) { slc->ref_pic_list_reordering.ref_pic_list_reordering_flag_l0 = read_bits( buf, 1); if (slc->ref_pic_list_reordering.ref_pic_list_reordering_flag_l0 == 1) { do { slc->ref_pic_list_reordering.reordering_of_pic_nums_idc = read_exp_golomb(buf); if (slc->ref_pic_list_reordering.reordering_of_pic_nums_idc == 0 || slc->ref_pic_list_reordering.reordering_of_pic_nums_idc == 1) { slc->ref_pic_list_reordering.abs_diff_pic_num_minus1 = read_exp_golomb(buf); } else if (slc->ref_pic_list_reordering.reordering_of_pic_nums_idc == 2) { slc->ref_pic_list_reordering.long_term_pic_num = read_exp_golomb(buf); } } while (slc->ref_pic_list_reordering.reordering_of_pic_nums_idc != 3); } } if (slc->slice_type == SLICE_B) { slc->ref_pic_list_reordering.ref_pic_list_reordering_flag_l1 = read_bits( buf, 1); if (slc->ref_pic_list_reordering.ref_pic_list_reordering_flag_l1 == 1) { do { slc->ref_pic_list_reordering.reordering_of_pic_nums_idc = read_exp_golomb(buf); if (slc->ref_pic_list_reordering.reordering_of_pic_nums_idc == 0 || slc->ref_pic_list_reordering.reordering_of_pic_nums_idc == 1) { slc->ref_pic_list_reordering.abs_diff_pic_num_minus1 = read_exp_golomb(buf); } else if (slc->ref_pic_list_reordering.reordering_of_pic_nums_idc == 2) { slc->ref_pic_list_reordering.long_term_pic_num = read_exp_golomb(buf); } } while (slc->ref_pic_list_reordering.reordering_of_pic_nums_idc != 3); } } } void parse_pred_weight_table(struct buf_reader *buf, struct nal_unit *nal) { struct seq_parameter_set_rbsp *sps = nal->sps; struct pic_parameter_set_rbsp *pps = nal->pps; struct slice_header *slc = nal->slc; if (!sps || !pps) return; nal->slc->pred_weight_table.luma_log2_weight_denom = read_exp_golomb(buf); uint32_t ChromaArrayType = sps->chroma_format_idc; if(sps->separate_colour_plane_flag) ChromaArrayType = 0; if (ChromaArrayType != 0) nal->slc->pred_weight_table.chroma_log2_weight_denom = read_exp_golomb(buf); int i; for (i = 0; i <= slc->num_ref_idx_l0_active_minus1; i++) { uint8_t luma_weight_l0_flag = read_bits(buf, 1); if (luma_weight_l0_flag == 1) { nal->slc->pred_weight_table.luma_weight_l0[i] = read_exp_golomb_s(buf); nal->slc->pred_weight_table.luma_offset_l0[i] = read_exp_golomb_s(buf); } if (ChromaArrayType != 0) { uint8_t chroma_weight_l0_flag = read_bits(buf, 1); if (chroma_weight_l0_flag == 1) { int j; for (j = 0; j < 2; j++) { nal->slc->pred_weight_table.chroma_weight_l0[i][j] = read_exp_golomb_s(buf); nal->slc->pred_weight_table.chroma_offset_l0[i][j] = read_exp_golomb_s(buf); } } } } if ((slc->slice_type % 5) == SLICE_B) { /* FIXME: Being spec-compliant here and loop to num_ref_idx_l0_active_minus1 * will break Divx7 files. Keep this in mind if any other streams are broken */ for (i = 0; i <= slc->num_ref_idx_l1_active_minus1; i++) { uint8_t luma_weight_l1_flag = read_bits(buf, 1); if (luma_weight_l1_flag == 1) { nal->slc->pred_weight_table.luma_weight_l1[i] = read_exp_golomb_s(buf); nal->slc->pred_weight_table.luma_offset_l1[i] = read_exp_golomb_s(buf); } if (ChromaArrayType != 0) { uint8_t chroma_weight_l1_flag = read_bits(buf, 1); if (chroma_weight_l1_flag == 1) { int j; for (j = 0; j < 2; j++) { nal->slc->pred_weight_table.chroma_weight_l1[i][j] = read_exp_golomb_s(buf); nal->slc->pred_weight_table.chroma_offset_l1[i][j] = read_exp_golomb_s(buf); } } } } } } void decode_ref_pic_marking(struct nal_unit *nal, uint32_t memory_management_control_operation, uint32_t marking_nr, struct nal_parser *parser) { struct slice_header *slc = nal->slc; struct dpb *dpb = &parser->dpb; if (!slc) return; if (memory_management_control_operation == 1) { // short-term -> unused for reference uint32_t pic_num_x = (nal->curr_pic_num - (slc->dec_ref_pic_marking[marking_nr].difference_of_pic_nums_minus1 + 1))%nal->max_pic_num; struct decoded_picture* pic = NULL; if ((pic = dpb_get_picture(dpb, pic_num_x)) != NULL) { if (pic->nal->slc->field_pic_flag == 0) { dpb_set_unused_ref_picture_a(dpb, pic); } else { //if(!pic->top_is_reference) dpb_set_unused_ref_picture_a(dpb, pic); /*else pic->top_is_reference = 0;*/ //printf("FIXME: We might need do delete more from the DPB...\n"); // FIXME: some more handling needed here?! See 8.2.5.4.1, p. 120 } } } else if (memory_management_control_operation == 2) { // long-term -> unused for reference struct decoded_picture* pic = dpb_get_picture_by_ltpn(dpb, slc->dec_ref_pic_marking[marking_nr].long_term_pic_num); if (pic != NULL) { if (pic->nal->slc->field_pic_flag == 0) dpb_set_unused_ref_picture(dpb, slc->dec_ref_pic_marking[marking_nr].long_term_pic_num); else { dpb_set_unused_ref_picture(dpb, slc->dec_ref_pic_marking[marking_nr].long_term_pic_num); printf("FIXME: We might need do delete more from the DPB...\n"); } } } else if (memory_management_control_operation == 3) { // short-term -> long-term, set long-term frame index uint32_t pic_num_x = nal->curr_pic_num - (slc->dec_ref_pic_marking[marking_nr].difference_of_pic_nums_minus1 + 1); struct decoded_picture* pic = dpb_get_picture_by_ltidx(dpb, slc->dec_ref_pic_marking[marking_nr].long_term_pic_num); if (pic != NULL) dpb_set_unused_ref_picture_bylidx(dpb, slc->dec_ref_pic_marking[marking_nr].long_term_frame_idx); pic = dpb_get_picture(dpb, pic_num_x); if (pic) { if (pic->nal->slc->field_pic_flag == 0) { pic = dpb_get_picture(dpb, pic_num_x); pic->nal->long_term_frame_idx = slc->dec_ref_pic_marking[marking_nr].long_term_frame_idx; } else printf("FIXME: B Set frame %d to long-term ref\n", pic_num_x); } else { printf("memory_management_control_operation: 3 failed. No such picture.\n"); } } else if (memory_management_control_operation == 4) { // set max-long-term frame index, // mark all long-term pictures with long-term frame idx // greater max-long-term farme idx as unused for ref if (slc->dec_ref_pic_marking[marking_nr].max_long_term_frame_idx_plus1 == 0) dpb_set_unused_ref_picture_lidx_gt(dpb, 0); else dpb_set_unused_ref_picture_lidx_gt(dpb, slc->dec_ref_pic_marking[marking_nr].max_long_term_frame_idx_plus1 - 1); } else if (memory_management_control_operation == 5) { // mark all ref pics as unused for reference, // set max-long-term frame index = no long-term frame idxs dpb_flush(dpb); parser->pic_order_cnt_lsb = 0; parser->pic_order_cnt_msb = 0; parser->prev_pic_order_cnt_lsb = 0; parser->prev_pic_order_cnt_msb = 0; } else if (memory_management_control_operation == 6) { // mark current picture as used for long-term ref, // assing long-term frame idx to it struct decoded_picture* pic = dpb_get_picture_by_ltidx(dpb, slc->dec_ref_pic_marking[marking_nr].long_term_frame_idx); if (pic != NULL) dpb_set_unused_ref_picture_bylidx(dpb, slc->dec_ref_pic_marking[marking_nr].long_term_frame_idx); nal->long_term_frame_idx = slc->dec_ref_pic_marking[marking_nr].long_term_frame_idx; if (slc->field_pic_flag == 0) { nal->used_for_long_term_ref = 1; } else printf("FIXME: BY Set frame to long-term ref\n"); } /* FIXME: Do we need to care about MMC=0? */ } void parse_dec_ref_pic_marking(struct buf_reader *buf, struct nal_parser *parser) { struct nal_unit *nal = parser->current_nal; struct pic_parameter_set_rbsp *pps = parser->current_nal->pps; struct slice_header *slc = nal->slc; if (!slc || !pps) return; slc->dec_ref_pic_marking_count = 0; int i = slc->dec_ref_pic_marking_count; if (nal->nal_unit_type == NAL_SLICE_IDR) { slc->dec_ref_pic_marking[i].no_output_of_prior_pics_flag = read_bits(buf, 1); slc->dec_ref_pic_marking[i].long_term_reference_flag = read_bits(buf, 1); } else { slc->dec_ref_pic_marking[i].adaptive_ref_pic_marking_mode_flag = read_bits( buf, 1); if (slc->dec_ref_pic_marking[i].adaptive_ref_pic_marking_mode_flag) { do { slc->dec_ref_pic_marking[i].memory_management_control_operation = read_exp_golomb(buf); if (slc->dec_ref_pic_marking[i].memory_management_control_operation == 1 || slc->dec_ref_pic_marking[i].memory_management_control_operation == 3) slc->dec_ref_pic_marking[i].difference_of_pic_nums_minus1 = read_exp_golomb(buf); if (slc->dec_ref_pic_marking[i].memory_management_control_operation == 2) slc->dec_ref_pic_marking[i].long_term_pic_num = read_exp_golomb(buf); if (slc->dec_ref_pic_marking[i].memory_management_control_operation == 3 || slc->dec_ref_pic_marking[i].memory_management_control_operation == 6) slc->dec_ref_pic_marking[i].long_term_frame_idx = read_exp_golomb(buf); if (slc->dec_ref_pic_marking[i].memory_management_control_operation == 4) slc->dec_ref_pic_marking[i].max_long_term_frame_idx_plus1 = read_exp_golomb(buf); i++; if(i >= 10) { printf("Error: Not more than 10 MMC operations supported per slice. Dropping some.\n"); i = 0; } } while (slc->dec_ref_pic_marking[i-1].memory_management_control_operation != 0); } } slc->dec_ref_pic_marking_count = (i>0) ? (i-1) : 0; } /* ----------------- NAL parser ----------------- */ struct nal_parser* init_parser() { struct nal_parser *parser = calloc(1, sizeof(struct nal_parser)); parser->nal0 = init_nal_unit(); parser->nal1 = init_nal_unit(); parser->current_nal = parser->nal0; parser->last_nal = parser->nal1; parser->slice_cnt = 1; parser->field = -1; /* no idea why we do that. inspired by libavcodec, * as we couldn't figure in the specs.... */ parser->prev_pic_order_cnt_msb = parser->pic_order_cnt_lsb = 1 << 16; return parser; } void free_parser(struct nal_parser *parser) { free_nal_unit(parser->nal0); free_nal_unit(parser->nal1); free(parser); } void parse_codec_private(struct nal_parser *parser, uint8_t *inbuf, int inbuf_len) { struct buf_reader bufr; bufr.buf = inbuf; bufr.cur_pos = inbuf; bufr.cur_offset = 8; bufr.len = inbuf_len; struct nal_unit *nal = parser->current_nal; struct nal_unit *nal1 = parser->last_nal; if (!nal->sps) nal->sps = calloc(1, sizeof(struct seq_parameter_set_rbsp)); else memset(nal->sps, 0x00, sizeof(struct seq_parameter_set_rbsp)); /* reserved */ read_bits(&bufr, 8); nal->sps->profile_idc = read_bits(&bufr, 8); read_bits(&bufr, 8); nal->sps->level_idc = read_bits(&bufr, 8); read_bits(&bufr, 6); parser->nal_size_length = read_bits(&bufr, 2) + 1; parser->nal_size_length_buf = calloc(1, parser->nal_size_length); read_bits(&bufr, 3); uint8_t sps_count = read_bits(&bufr, 5); inbuf += 6; inbuf_len -= 6; int i; for(i = 0; i < sps_count; i++) { uint16_t sps_size = read_bits(&bufr, 16); inbuf += 2; inbuf_len -= 2; parse_nal(inbuf, sps_size, parser); inbuf += sps_size; inbuf_len -= sps_size; } bufr.buf = inbuf; bufr.cur_pos = inbuf; bufr.cur_offset = 8; bufr.len = inbuf_len; uint8_t pps_count = read_bits(&bufr, 8); inbuf += 1; for(i = 0; i < pps_count; i++) { uint16_t pps_size = read_bits(&bufr, 16); inbuf += 2; inbuf_len -= 2; parse_nal(inbuf, pps_size, parser); inbuf += pps_size; inbuf_len -= pps_size; } copy_nal_unit(nal1, nal); printf("done parsing extradata\n"); } void process_mmc_operations(struct nal_parser *parser) { if(parser->last_nal_res == 1 && parser->current_nal && parser->current_nal->slc) { int i; for(i = 0; i < parser->current_nal->slc->dec_ref_pic_marking_count; i++) { decode_ref_pic_marking( parser->current_nal, parser->current_nal->slc->dec_ref_pic_marking[i].memory_management_control_operation, i, parser); } if (parser->last_nal->slc != NULL) parser->prev_pic_order_cnt_lsb = parser->last_nal->slc->pic_order_cnt_lsb; parser->prev_pic_order_cnt_msb = parser->pic_order_cnt_msb; } } int parse_frame(struct nal_parser *parser, uint8_t *inbuf, int inbuf_len, uint8_t **ret_buf, uint32_t *ret_len, uint32_t *ret_slice_cnt) { int32_t next_nal = 0; int32_t offset = 0; int start_seq_len = 3; if(parser->nal_size_length > 0) start_seq_len = offset = parser->nal_size_length; if (parser->prebuf_len + inbuf_len > MAX_FRAME_SIZE) { printf("buf underrun!!\n"); *ret_len = 0; *ret_buf = NULL; parser->prebuf_len = 0; return inbuf_len; } /* copy the whole inbuf to the prebuf, * then search for a nal-start sequence in the prebuf, * if it's in there, parse the nal and append to parser->buf * or return a frame */ xine_fast_memcpy(parser->prebuf + parser->prebuf_len, inbuf, inbuf_len); parser->prebuf_len += inbuf_len; while((next_nal = seek_for_nal(parser->prebuf+start_seq_len-offset, parser->prebuf_len-start_seq_len+offset, parser)) > 0) { if(!parser->nal_size_length && (parser->prebuf[0] != 0x00 || parser->prebuf[1] != 0x00 || parser->prebuf[2] != 0x01)) { printf("Broken NAL, skip it.\n"); parser->last_nal_res = 2; } else parser->last_nal_res = parse_nal(parser->prebuf+start_seq_len, next_nal, parser); if ((parser->last_nal_res == 1 || parser->last_nal_res == 3) && parser->buf_len > 0) { //printf("Frame complete: %d bytes\n", parser->buf_len); *ret_len = parser->buf_len; *ret_buf = malloc(*ret_len); xine_fast_memcpy(*ret_buf, parser->buf, parser->buf_len); *ret_slice_cnt = parser->slice_cnt; parser->slice_cnt = 1; parser->buf_len = 0; /* this is a SLICE, keep it in the buffer */ if(parser->last_nal_res != 3) { if(parser->nal_size_length > 0) { static const uint8_t start_seq[3] = { 0x00, 0x00, 0x01 }; xine_fast_memcpy(parser->buf, start_seq, 3); parser->buf_len += 3; } xine_fast_memcpy(parser->buf+parser->buf_len, parser->prebuf+offset, next_nal+start_seq_len-2*offset); parser->buf_len += next_nal+start_seq_len-2*offset; } memmove(parser->prebuf, parser->prebuf+(next_nal+start_seq_len-offset), parser->prebuf_len-(next_nal+start_seq_len-offset)); parser->prebuf_len -= next_nal+start_seq_len-offset; return inbuf_len; } /* got a new nal, which is part of the current * coded picture. add it to buf */ if (parser->last_nal_res < 2) { if (parser->buf_len + next_nal+start_seq_len-offset > MAX_FRAME_SIZE) { printf("buf underrun 1!!\n"); parser->buf_len = 0; *ret_len = 0; *ret_buf = NULL; return inbuf_len; } if(parser->nal_size_length > 0) { static const uint8_t start_seq[3] = { 0x00, 0x00, 0x01 }; xine_fast_memcpy(parser->buf+parser->buf_len, start_seq, 3); parser->buf_len += 3; } xine_fast_memcpy(parser->buf+parser->buf_len, parser->prebuf+offset, next_nal+start_seq_len-2*offset); parser->buf_len += next_nal+start_seq_len-2*offset; memmove(parser->prebuf, parser->prebuf+(next_nal+start_seq_len-offset), parser->prebuf_len-(next_nal+start_seq_len-offset)); parser->prebuf_len -= next_nal+start_seq_len-offset; } else { /* got a non-relevant nal, just remove it */ memmove(parser->prebuf, parser->prebuf+(next_nal+start_seq_len-offset), parser->prebuf_len-(next_nal+start_seq_len-offset)); parser->prebuf_len -= next_nal+start_seq_len-offset; } } *ret_buf = NULL; *ret_len = 0; return inbuf_len; } /** * @return 0: NAL is part of coded picture * 2: NAL is not part of coded picture * 1: NAL is the beginning of a new coded picture * 3: NAL is marked as END_OF_SEQUENCE */ int parse_nal(uint8_t *buf, int buf_len, struct nal_parser *parser) { struct buf_reader bufr; bufr.buf = buf; bufr.cur_pos = buf; bufr.cur_offset = 8; bufr.len = buf_len; struct nal_unit *nal = parser->current_nal; struct nal_unit *last_nal = parser->last_nal; int res = parse_nal_header(&bufr, parser); if (res == NAL_SLICE_IDR) { parser->is_idr = 1; } calculate_pic_order(parser); if (res >= NAL_SLICE && res <= NAL_SLICE_IDR) { // now detect if it's a new frame! int ret = 0; uint8_t reason = 0; if (nal->slc->field_pic_flag == 1) parser->field = nal->slc->bottom_field_flag; else { parser->have_top = 1; parser->field = -1; } if (nal->slc->field_pic_flag == 1 && nal->slc->bottom_field_flag == 0) parser->have_top = 1; parser->slice = 1; if (nal->slc == NULL || last_nal->slc == NULL) { ret = 1; reason++; } if (nal->slc && last_nal->slc && (nal->slc->frame_num != last_nal->slc->frame_num)) { ret = 1; reason++; } if (nal->slc && last_nal->slc && (nal->slc->pic_parameter_set_id != last_nal->slc->pic_parameter_set_id)) { ret = 1; reason++; } if (nal->slc && last_nal->slc && (nal->slc->field_pic_flag != last_nal->slc->field_pic_flag)) { ret = 1; reason++; } if (nal->slc && last_nal->slc && nal->slc->bottom_field_flag != last_nal->slc->bottom_field_flag) { ret = 1; reason++; } if (nal->nal_ref_idc != last_nal->nal_ref_idc && (nal->nal_ref_idc == 0 || last_nal->nal_ref_idc == 0)) { ret = 1; reason++; } if (nal->sps && nal->slc && last_nal->slc && (nal->sps->pic_order_cnt_type == 0 && last_nal->sps->pic_order_cnt_type == 0 && (nal->slc->pic_order_cnt_lsb != last_nal->slc->pic_order_cnt_lsb || nal->slc->delta_pic_order_cnt_bottom != last_nal->slc->delta_pic_order_cnt_bottom))) { ret = 1; reason++; /*printf("C: Reason: %d, %d, %d\n", res, nal->slc->pic_order_cnt_lsb, last_nal->slc->pic_order_cnt_lsb);*/ } if (nal->slc && last_nal->slc && (nal->sps->pic_order_cnt_type == 1 && last_nal->sps->pic_order_cnt_type == 1 && (nal->slc->delta_pic_order_cnt[0] != last_nal->slc->delta_pic_order_cnt[0] || nal->slc->delta_pic_order_cnt[1] != last_nal->slc->delta_pic_order_cnt[1]))) { ret = 1; reason++; } if (nal->nal_unit_type != last_nal->nal_unit_type && (nal->nal_unit_type == 5 || last_nal->nal_unit_type == 5)) { ret = 1; reason++; } if (nal->slc && last_nal->slc && (nal->nal_unit_type == 5 && last_nal->nal_unit_type == 5 && nal->slc->idr_pic_id != last_nal->slc->idr_pic_id)) { ret = 1; reason++; } if (parser->current_nal == parser->nal0) { parser->current_nal = parser->nal1; parser->last_nal = parser->nal0; } else { parser->current_nal = parser->nal0; parser->last_nal = parser->nal1; } if(!parser->current_nal->sps && parser->last_nal->sps) { parser->current_nal->sps = malloc(sizeof(struct seq_parameter_set_rbsp)); xine_fast_memcpy(parser->current_nal->sps, parser->last_nal->sps, sizeof(struct seq_parameter_set_rbsp)); } if(!parser->current_nal->pps && parser->last_nal->pps) { parser->current_nal->pps = malloc(sizeof(struct pic_parameter_set_rbsp)); xine_fast_memcpy(parser->current_nal->pps, parser->last_nal->pps, sizeof(struct pic_parameter_set_rbsp)); } /* increase the slice_cnt until a new frame is detected */ if (!ret) parser->slice_cnt++; return ret; } else if (res == NAL_PPS || res == NAL_SPS) { return 2; } else if (res == NAL_END_OF_SEQUENCE) { if (parser->current_nal == parser->nal0) { parser->current_nal = parser->nal1; parser->last_nal = parser->nal0; } else { parser->current_nal = parser->nal0; parser->last_nal = parser->nal1; } return 3; } else if (res >= NAL_SEI) { return 2; } return 0; } int seek_for_nal(uint8_t *buf, int buf_len, struct nal_parser *parser) { if(buf_len <= 0) return -1; if(parser->nal_size_length > 0) { if(buf_len < parser->nal_size_length) { return -1; } uint32_t next_nal = parser->next_nal_position; if(!next_nal) { struct buf_reader bufr; bufr.buf = buf; bufr.cur_pos = buf; bufr.cur_offset = 8; bufr.len = buf_len; next_nal = read_bits(&bufr, parser->nal_size_length*8)+parser->nal_size_length; } if(next_nal > buf_len) { parser->next_nal_position = next_nal; return -1; } else parser->next_nal_position = 0; return next_nal; } /* NAL_END_OF_SEQUENCE has only 1 byte, so * we do not need to search for the next start sequence */ if(buf[0] == NAL_END_OF_SEQUENCE) return 1; int i; for (i = 0; i < buf_len - 2; i++) { if (buf[i] == 0x00 && buf[i + 1] == 0x00 && buf[i + 2] == 0x01) { //printf("found nal at: %d\n", i); return i; } } return -1; }