1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
|
/*
* Copyright (C) 2010 Andreas Auras
*
* This file is part of the DF10CH Atmolight controller project.
*
* DF10CH Atmolight controller is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* DF10CH Atmolight controller is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*/
// ======================================================================
// Application firmware for PWM processor.
//
#include <stdint.h>
#include <string.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include "../df10ch_common.h"
#include "../df10ch_usb_proto.h"
// ---
// Fuse-Bit settings for the flash programmer (ATmega 162):
//
// M161C=1
// BODLEVEL2=1
// BODLEVEL1=0
// BODLEVEL0=0
//
// OCDEN=1
// JTAGEN=1
// SPIEN=0
// WDTON=0
// EESAVE=1
// BOOTSZ1=0
// BOOTSZ0=0
// BOOTRST=1
//
// CKDIV8=1
// CKOUT=1
// SUT1=0
// SUT0=1
// CKSEL3=1
// CKSEL2=1
// CKSEL1=1
// CKSEL0=1
//
// Memory-Lock Bits:
// BLB12=1, BLB11=0, BLB02=1, BLB01=1, LB2=1, LB1=1
//
FUSES =
{
.low = (FUSE_SUT1),
.high = (FUSE_SPIEN & FUSE_WDTON & FUSE_BOOTSZ1 & FUSE_BOOTSZ0),
.extended = (FUSE_BODLEVEL1 & FUSE_BODLEVEL0),
};
LOCKBITS = (LB_MODE_1 & BLB0_MODE_1 & BLB1_MODE_2);
//SIGNATURE_DATA = { SIGNATURE_2, SIGNATURE_1, SIGNATURE_0 } ;
// ---
// System clock related.
// System clock is implemented with hardware timer 0
//
#define SYS_HWPRESCALE 64 // Hardware Prescaler
#define SYS_PRESCALER 256 // Timer Prescaler
// useconds <-> timer ticks conversation
#define US2TICKS(t) ((uint16_t)((double)(t) * (double)F_CPU / (1000000.0 * (double)SYS_HWPRESCALE * (double)SYS_PRESCALER) + 0.5))
#define TICKS2US(t) (((t) / (F_CPU / (1000000UL * SYS_HWPRESCALE * SYS_PRESCALER))))
static uint16_t sys_clock;
// ---
// Keep alive reply related
//
#define MIN_KEEP_ALIVE_PAUSE US2TICKS(15000)
static uint16_t last_keep_alive;
// ---
// Request parser related variables
//
typedef union
{
uint8_t bytes[REQ_HEADER_SIZE];
struct
{
uint8_t request_type;
uint8_t request;
bytes_word_t value;
bytes_word_t index;
bytes_word_t length;
};
} pwm_request_t;
static pwm_request_t actual_req;
static uint8_t header_pos;
static uint8_t payload_pos;
static uint8_t payload_count;
// ---
// PWM generation related
//
#define DEF_F_PWM 100UL // Default PWM cycle frequency in Hz
#define PWM_HWPRESCALE 16 // Hardware timer prescale
#define PWM_PRESCALE 9 // require: (PWM_PRESCALE * PWM_HWPRESCALE) > (size of ISR for timer )
#define DEF_MAX_PWM (F_CPU / (PWM_HWPRESCALE * PWM_PRESCALE * DEF_F_PWM) - 1) // Maximum internal resolution for pwm
#define PWM_STEP_PAGE_SIZE (NCHANNELS + 2) // possible maximum steps: NCHANNELS + Pause + End of Table
typedef struct pwm_step_s {
uint8_t port_val[NPORTS]; // Values for Port A,B,C,D
uint16_t timer_val; // Timer compare value
struct pwm_step_s *next_step; // Pointer to next list entry
} pwm_step_t;
// One actual and one shadow page
static pwm_step_t pwm_step_page1[PWM_STEP_PAGE_SIZE] NOMEMINIT;
static pwm_step_t pwm_step_page2[PWM_STEP_PAGE_SIZE] NOMEMINIT;
static pwm_step_t *shadow_pwm_page NOMEMINIT;
static pwm_step_t *active_pwm_page NOMEMINIT;
static pwm_step_t * volatile actual_pwm_step NOMEMINIT;
static uint8_t update_pwm_page NOMEMINIT;
// ---
// RX buffer related variables
//
#define RXBUF_SIZE (REQ_HEADER_SIZE + MAX_REQ_PAYLOAD_SIZE + 1)
#if RXBUF_SIZE == 256
#define CHECK_RXBUF_END(pos)
#else
#define CHECK_RXBUF_END(pos) if ((pos) == RXBUF_SIZE) (pos) = 0
#endif
static uint8_t volatile rxrpos, rxwpos, rxspos, rx_err_status;
static uint8_t rxbuf[RXBUF_SIZE] NOMEMINIT;
// ---
// Actual brightness values for each channel
//
static uint16_t bright_vals[NCHANNELS];
// ---
// Port channel mapping related variables
//
typedef struct { uint8_t code, port_bits; } channel_map_t;
static const channel_map_t default_channel_map[NCHANNELS] PROGMEM = {
// J3
{ CM_CODE(PA_IDX, 0), _BV(2) },
{ CM_CODE(PA_IDX, 1), _BV(1) },
{ CM_CODE(PA_IDX, 2), _BV(0) },
// J4
{ CM_CODE(PA_IDX, 3), _BV(5) },
{ CM_CODE(PA_IDX, 4), _BV(4) },
{ CM_CODE(PA_IDX, 5), _BV(3) },
// J5
{ CM_CODE(PC_IDX, 6), _BV(7) },
{ CM_CODE(PA_IDX, 7), _BV(7) },
{ CM_CODE(PA_IDX, 8), _BV(6) },
// J6
{ CM_CODE(PC_IDX, 9), _BV(4) },
{ CM_CODE(PC_IDX, 10), _BV(5) },
{ CM_CODE(PC_IDX, 11), _BV(6) },
// J7
{ CM_CODE(PC_IDX, 12), _BV(1) },
{ CM_CODE(PC_IDX, 13), _BV(2) },
{ CM_CODE(PC_IDX, 14), _BV(3) },
// J8
{ CM_CODE(PD_IDX, 15), _BV(6) },
{ CM_CODE(PD_IDX, 16), _BV(7) },
{ CM_CODE(PC_IDX, 17), _BV(0) },
// J9
{ CM_CODE(PD_IDX, 18), _BV(3) },
{ CM_CODE(PD_IDX, 19), _BV(4) },
{ CM_CODE(PD_IDX, 20), _BV(5) },
// J10
{ CM_CODE(PB_IDX, 21), _BV(6) },
{ CM_CODE(PB_IDX, 22), _BV(7) },
{ CM_CODE(PD_IDX, 23), _BV(2) },
// J11
{ CM_CODE(PB_IDX, 24), _BV(3) },
{ CM_CODE(PB_IDX, 25), _BV(4) },
{ CM_CODE(PB_IDX, 26), _BV(5) },
// J12
{ CM_CODE(PB_IDX, 27), _BV(0) },
{ CM_CODE(PB_IDX, 28), _BV(1) },
{ CM_CODE(PB_IDX, 29), _BV(2) }
};
// ---
// Setup values that will be stored to eeprom.
//
typedef struct {
uint16_t max_pwm;
uint8_t common_pwm;
channel_map_t channel_map[NCHANNELS];
} setup_t;
setup_t setup NOMEMINIT;
#define EE_VALID_MARK 0xA5
static uint8_t ee_valid EEMEM; // If eeprom content is valid this byte is EE_VALID_MARK
static setup_t ee_setup EEMEM;
// Status LED related
#define STATUS_LED_PORT PORTE
#define STATUS_LED_BIT 1
// Common PWM channel related
#define MAX_COMMON_PWM 255
#define DEF_COMMON_PWM 255 // Default common pwm value
#define COMMON_PWM_PORT PORTE
#define COMMON_PWM_BIT 2
// Input pin for enable/disable of bootloader
#define BL_SENSE_PIN PINE
#define BL_SENSE_BIT 0
// ---
// Definition of port direction and initial values.
//
#define PA_DDR 0xFF
#define PA_INIT 0x00
#define PB_DDR 0xFF
#define PB_INIT 0x00
#define PC_DDR 0xFF
#define PC_INIT 0x00
#define PD_DDR (_BV(1) | _BV(2) | _BV(3) | _BV(4) | _BV(5) | _BV(6) | _BV(7))
#define PD_INIT _BV(1)
#define PE_DDR (_BV(STATUS_LED_BIT) | _BV(COMMON_PWM_BIT))
#define PE_INIT _BV(BL_SENSE_BIT)
// ---
// Catchup all unused interrupts and wait until watchdog resets device.
// This ISR is only for unexpected interrupts.
//
ISR(BADISR_vect)
{
for (;;);
}
// ---
// ISR for PWM generation.
//
ISR(TIMER3_COMPA_vect)
{
pwm_step_t *p = actual_pwm_step;
// Optimized OCR3A = p->timer_val
OCR3AH = ((uint8_t *)&(p->timer_val))[1];
OCR3AL = ((uint8_t *)&(p->timer_val))[0];
PORTA = p->port_val[PA_IDX];
PORTB = p->port_val[PB_IDX];
PORTC = p->port_val[PC_IDX];
PORTD = p->port_val[PD_IDX];
// Optimized actual_pwm_step = p->next_step
((uint8_t *)&(actual_pwm_step))[0] = ((uint8_t *)&(p->next_step))[0];
((uint8_t *)&(actual_pwm_step))[1] = ((uint8_t *)&(p->next_step))[1];
}
// ---
// ISR for receiving data.
//
ISR(USART0_RXC_vect)
{
clear_bit(UCSR0B, RXCIE0);
sei();
do
{
uint8_t i = rxwpos;
uint8_t p = i + 1;
CHECK_RXBUF_END(p);
if (p == rxrpos)
set_bit(rx_err_status, COMM_ERR_OVERFLOW);
else
rxwpos = p; // set data valid
if (bit_is_set(UCSR0A, DOR0))
set_bit(rx_err_status, COMM_ERR_OVERRUN);
if (bit_is_set(UCSR0A, FE0))
set_bit(rx_err_status, COMM_ERR_FRAME);
if (bit_is_set(UCSR0B, RXB80))
rxspos = i; // save start of request message
rxbuf[i] = UDR0; // read data
}
while (bit_is_set(UCSR0A, RXC0));
cli();
set_bit(UCSR0B, RXCIE0);
}
// ---
// Processing while waiting for a event.
//
static void background_processing(void)
{
wdt_reset();
// count system clock
if (bit_is_set(TIFR, TOV0))
{
++sys_clock;
TIFR = _BV(TOV0);
}
}
// ---
// Put data into transmit buffer.
//
static void send_reply_data(uint8_t c)
{
// Wait until transmit buffer free
while (bit_is_clear(UCSR0A, UDRE0))
background_processing();
UDR0 = c;
}
// ---
// Send reply start.
//
static void send_reply_start(uint8_t len)
{
// Wait until transmit buffer free
while (bit_is_clear(UCSR0A, UDRE0))
background_processing();
uint8_t id = actual_req.request_type & PWMRQ_ID_MASK;
if (len)
id |= PWMRP_HAS_PAYLOAD;
set_bit(UCSR0B, TXB80); // Set 9th bit for start of reply
UDR0 = id; // Send reply id
clear_bit(UCSR0B, TXB80);
if (len)
send_reply_data(len); // Send reply length
last_keep_alive = sys_clock;
}
// ---
// Send keep alive reply.
//
static void send_keep_alive_reply(void)
{
background_processing();
if ((sys_clock - last_keep_alive) > MIN_KEEP_ALIVE_PAUSE)
{
// Wait until transmit buffer free
while (bit_is_clear(UCSR0A, UDRE0))
background_processing();
set_bit(UCSR0B, TXB80); // Set 9th bit for start of reply
UDR0 = PWMRP_KEEP_ALIVE; // Send keep alive ID
clear_bit(UCSR0B, TXB80);
last_keep_alive = sys_clock;
}
}
// ---
// Set on time 'v' for port bits 'pb' of port 'pi' in shadow pwm page.
//
static void set_channel(uint8_t pi, uint8_t pb, uint16_t v)
{
pwm_step_t *p = shadow_pwm_page;
pwm_step_t *l, *n;
while (p->timer_val && v >= p->timer_val)
{
p->port_val[pi] |= pb;
if (p->timer_val == v)
return;
l = p;
p = l->next_step;
}
if (p->timer_val)
{
n = p;
do
{
l = n;
n = l->next_step;
}
while (n->timer_val);
l->next_step = n->next_step;
n[0] = p[0];
p->next_step = n;
}
else
{
p->port_val[PA_IDX] = PA_INIT;
p->port_val[PB_IDX] = PB_INIT;
p->port_val[PC_IDX] = PC_INIT;
p->port_val[PD_IDX] = PD_INIT;
}
p->timer_val = v;
p->port_val[pi] |= pb;
}
// ---
// Init shadow pwm page.
//
static uint8_t init_pwm_page(uint8_t do_init)
{
pwm_step_t *p = shadow_pwm_page;
pwm_step_t *e = p + PWM_STEP_PAGE_SIZE;
// Check if shadow page is deactivated
cli();
pwm_step_t *a = actual_pwm_step;
sei();
if (a >= p && a < e)
return(0); // Shadow page is still active
if (do_init)
{
while (p < e)
{
p->timer_val = 0;
a = p + 1;
p->next_step = a;
p = a;
}
}
return(1);
}
// ---
// Finalize shadow pwm page and activate it.
//
static void activate_pwm_page(void)
{
pwm_step_t *p = shadow_pwm_page;
pwm_step_t *l;
uint16_t t = 0;
// Calculate time steps
while (p->timer_val)
{
uint16_t ts = p->timer_val - t;
t = p->timer_val;
p->timer_val = ts * PWM_PRESCALE;
l = p;
p = l->next_step;
}
// Add pause entry to reach a full cycle
t = setup.max_pwm - t;
if (t)
{
p->port_val[PA_IDX] = PA_INIT;
p->port_val[PB_IDX] = PB_INIT;
p->port_val[PC_IDX] = PC_INIT;
p->port_val[PD_IDX] = PD_INIT;
p->timer_val = t * PWM_PRESCALE;
l = p;
}
// Make list cyclic
p = shadow_pwm_page;
l->next_step = p;
// Install Link to shadow page in active page
p = active_pwm_page;
active_pwm_page = l;
l = shadow_pwm_page;
cli();
p->next_step = l;
sei();
// Swap shadow page
if (l == pwm_step_page1)
p = pwm_step_page2;
else
p = pwm_step_page1;
shadow_pwm_page = p;
update_pwm_page = 0;
}
// ---
// Calculate pwm page.
//
static void calc_pwm_page(void)
{
uint8_t c;
c = NCHANNELS;
while (c--)
{
uint8_t port_bits = setup.channel_map[c].port_bits;
if (port_bits)
{
uint8_t code = setup.channel_map[c].code;
uint16_t v = bright_vals[CM_CHANNEL(code)];
if (v)
{
if (v > setup.max_pwm)
v = setup.max_pwm;
set_channel(CM_PORT(code), port_bits, v);
}
}
}
}
// ---
// Initialize pwm step table and start pwm timer.
//
static void init_pwm_step_tab(void)
{
// Set up pwm step table
shadow_pwm_page = pwm_step_page1;
active_pwm_page = pwm_step_page2;
actual_pwm_step = pwm_step_page2;
init_pwm_page(1);
calc_pwm_page();
activate_pwm_page();
actual_pwm_step = active_pwm_page->next_step;
TCNT3 = 0; // Reset timer counter
OCR3A = PWM_PRESCALE; // Initial startup step
TCCR3B = _BV(CS32) | _BV(CS31) | _BV(WGM32); // Start timer, Prescaler 16, CTC mode
}
// ---
// Set default setup values.
//
static void init_setup_values(void)
{
setup.max_pwm = DEF_MAX_PWM;
setup.common_pwm = DEF_COMMON_PWM;
memcpy_P(&setup.channel_map, &default_channel_map, sizeof(setup.channel_map));
}
// ---
// Read setup values from eeprom.
//
static void read_setup_values(void)
{
if (eeprom_read_byte(&ee_valid) == EE_VALID_MARK)
eeprom_read_block(&setup, &ee_setup, sizeof(setup));
else
init_setup_values();
}
// ---
// Store actual setup values into eeprom.
//
static void store_setup_values(void)
{
uint8_t i = sizeof(setup);
uint8_t *src = (uint8_t *) (&setup);
uint8_t *dst = (uint8_t *) (&ee_setup);
while (i--)
{
if (eeprom_read_byte(dst) != *src)
{
eeprom_write_byte(dst, *src);
while (!eeprom_is_ready())
send_keep_alive_reply();
}
++src;
++dst;
}
if (eeprom_read_byte(&ee_valid) != EE_VALID_MARK)
{
eeprom_write_byte(&ee_valid, EE_VALID_MARK);
while (!eeprom_is_ready())
send_keep_alive_reply();
}
}
// ---
// Set common pwm value.
//
static void set_common_pwm(void)
{
uint8_t v = setup.common_pwm;
if (v == 0 || v == 255)
{
if (v)
set_bit(COMMON_PWM_PORT, COMMON_PWM_BIT);
else
clear_bit(COMMON_PWM_PORT, COMMON_PWM_BIT);
clear_bit(TCCR1A, COM1B1); // Normal port output
}
else
{
OCR1B = v;
clear_bit(COMMON_PWM_PORT, COMMON_PWM_BIT);
set_bit(TCCR1A, COM1B1); // pwm port output
}
}
// ---
// Send reply packet from ram memory.
//
static void send_reply_mem(uint8_t *data, uint16_t len)
{
pwm_request_t *r = &actual_req;
FIX_POINTER(r);
uint16_t p = r->index.word << 1;
uint16_t n = r->length.word;
if (p >= len)
n = 0;
if (n && (p + n) > len)
n = len - p;
if (n > MAX_REPLY_PAYLOAD_SIZE)
n = 0; // Send nothing!
send_reply_start(n);
data += p;
while (n)
{
send_reply_data(*data++);
--n;
}
}
// ---
// Process set brightness value.
//
static void req_set_brightness(void)
{
pwm_request_t *r = &actual_req;
FIX_POINTER(r);
uint8_t p = payload_pos;
uint16_t c = r->index.word;
uint16_t len = r->length.word >> 1;
while (len && c < NCHANNELS)
{
bytes_word_t v;
v.bytes[0] = rxbuf[p++];
CHECK_RXBUF_END(p);
v.bytes[1] = rxbuf[p++];
CHECK_RXBUF_END(p);
if (bright_vals[c] != v.word)
{
bright_vals[c] = v.word;
update_pwm_page = 1;
}
++c;
--len;
}
}
// ---
// Process set channel map request.
//
static void req_set_channel_map(void)
{
pwm_request_t *r = &actual_req;
FIX_POINTER(r);
uint8_t p = payload_pos;
uint16_t c = r->index.word;
uint16_t len = r->length.word >> 1;
while (len && c < NCHANNELS)
{
uint8_t v = rxbuf[p++];
CHECK_RXBUF_END(p);
if (CM_CHANNEL(v) >= NCHANNELS)
v = NCHANNELS - 1;
if (setup.channel_map[c].code != v)
{
setup.channel_map[c].code = v;
update_pwm_page = 1;
}
v = rxbuf[p++];
CHECK_RXBUF_END(p);
if (setup.channel_map[c].port_bits != v)
{
setup.channel_map[c].port_bits = v;
update_pwm_page = 1;
}
++c;
--len;
}
}
// ---
// Process received request.
//
static void process_request(void)
{
pwm_request_t *r = &actual_req;
FIX_POINTER(r);
uint8_t req = r->request;
if (req == PWM_REQ_SET_BRIGHTNESS)
req_set_brightness();
else if (req == PWM_REQ_SET_BRIGHTNESS_SYNCED)
{
req_set_brightness();
if (update_pwm_page)
{
while (!init_pwm_page(0))
background_processing();
}
}
else if (req == PWM_REQ_GET_BRIGHTNESS)
{
send_reply_mem((uint8_t *)bright_vals, sizeof(bright_vals));
return;
}
else if (req == PWM_REQ_SET_CHANNEL_MAP)
req_set_channel_map();
else if (req == PWM_REQ_GET_CHANNEL_MAP)
{
send_reply_mem((uint8_t *)&setup.channel_map, sizeof(setup.channel_map));
return;
}
else if (req == PWM_REQ_STORE_SETUP)
store_setup_values();
else if (req == PWM_REQ_RESET_SETUP)
{
init_setup_values();
update_pwm_page = 1;
if (eeprom_read_byte(&ee_valid) == EE_VALID_MARK)
eeprom_write_byte(&ee_valid, (uint8_t)(~EE_VALID_MARK)); // Invalidate eeprom values
}
else if (req == PWM_REQ_GET_REQUEST_ERR_STATUS)
{
send_reply_start(1);
send_reply_data(rx_err_status);
rx_err_status = 0;
return;
}
else if (req == PWM_REQ_SET_COMMON_PWM)
{
setup.common_pwm = (r->value.word <= MAX_COMMON_PWM) ? r->value.bytes[0]: MAX_COMMON_PWM;
set_common_pwm();
}
else if (req == PWM_REQ_GET_COMMON_PWM)
{
send_reply_start(2);
send_reply_data(setup.common_pwm);
send_reply_data(0);
return;
}
else if (req == PWM_REQ_GET_MAX_PWM)
{
send_reply_start(4);
send_reply_data((uint8_t)(setup.max_pwm & 0x00FF));
send_reply_data((uint8_t)(setup.max_pwm >> 8));
send_reply_data(MAX_COMMON_PWM);
send_reply_data(0);
return;
}
else if (req == PWM_REQ_SET_PWM_FREQ)
{
if (r->value.word >= MIN_PWM_FREQ && r->value.word <= MAX_PWM_FREQ)
{
setup.max_pwm = F_CPU / (PWM_HWPRESCALE * PWM_PRESCALE * (uint32_t)r->value.word) - 1;
update_pwm_page = 1;
}
}
else if (req == PWM_REQ_GET_PWM_FREQ)
{
uint16_t f = F_CPU / (((uint32_t)setup.max_pwm + 1) * PWM_HWPRESCALE * PWM_PRESCALE);
send_reply_start(2);
send_reply_data((uint8_t)(f & 0x00FF));
send_reply_data((uint8_t)(f >> 8));
return;
}
else if (req == PWM_REQ_GET_VERSION)
{
send_reply_start(2);
send_reply_data(PWM_VERS_APPL);
send_reply_data(FIRMWARE_VERSION);
return;
}
else if (req == PWM_REQ_ECHO_TEST)
{
send_reply_start(8);
send_reply_data(r->bytes[0]);
send_reply_data(r->bytes[1]);
send_reply_data(r->bytes[2]);
send_reply_data(r->bytes[3]);
send_reply_data(r->bytes[4]);
send_reply_data(r->bytes[5]);
send_reply_data(r->bytes[6]);
send_reply_data(r->bytes[7]);
return;
}
send_reply_start(0);
}
// ---
// Decode data byte of received data.
//
static void read_data(void)
{
uint8_t p, c, is_req_start;
// Read data from RX buffer
p = rxrpos;
is_req_start = (p == rxspos);
c = rxbuf[p++];
CHECK_RXBUF_END(p);
rxrpos = p;
p = header_pos;
if (is_req_start)
{
if (p)
set_bit(rx_err_status, COMM_ERR_TIMEOUT);
p = 0;
}
else if (!p)
return; // Discard garbage
if (p < sizeof(pwm_request_t))
{
pwm_request_t *r = &actual_req;
FIX_POINTER(r);
r->bytes[p++] = c;
header_pos = p;
if (p < sizeof(pwm_request_t))
return;
// Header complete
if (!(r->request_type & PWMRQ_DEVICE_TO_HOST) && r->length.word)
{
payload_pos = rxrpos;
payload_count = r->length.word;
return;
}
}
else if (--payload_count)
return; // Payload not complete
last_keep_alive = sys_clock;
process_request();
header_pos = 0;
}
// ---
// Device initialization and main program loop.
//
void main(void) NORETURN;
void main(void)
{
wdt_enable(WDTO_30MS); // Set watchdog timeout
// Port init, enable pull-up resistors for unused ports
PORTA = PA_INIT;
PORTB = PB_INIT;
PORTC = PC_INIT;
PORTD = PD_INIT;
PORTE = PE_INIT;
DDRA = PA_DDR;
DDRB = PB_DDR;
DDRC = PC_DDR;
DDRD = PD_DDR;
DDRE = PE_DDR;
// USART init
// 9 data bits, 1 stop bit, no parity, asynchron mode
// Enable TX, RX and RX Interrupts
#include <util/setbaud.h>
UBRR0H = UBRRH_VALUE;
UBRR0L = UBRRL_VALUE;
#if USE_2X
UCSR0A = _BV(U2X);
#endif
UCSR0C = _BV(URSEL0) | _BV(UCSZ01) | _BV(UCSZ00);
UCSR0B = _BV(RXEN0) | _BV(TXEN0) | _BV(RXCIE0) | _BV(UCSZ02);
read_setup_values();
// Timer 0 is used for system clock
// Normal mode, Prescaler 64
TCCR0 = _BV(CS01) | _BV(CS00);
// Timer 1 is used for common PWM generation
// Fast 8-Bit PWM mode, Prescaler 1, PWM output at OC1B Pin
TCCR1A = _BV(WGM10);
TCCR1B = _BV(WGM12) | _BV(CS10);
set_common_pwm();
// Timer 3 is used for PWM generation
ETIMSK = _BV(OCIE3A); // Enable timer 3 compare a interrupt
init_pwm_step_tab();
// Main loop
for (;;)
{
background_processing();
if (rxrpos != rxwpos)
read_data();
if (update_pwm_page && init_pwm_page(1))
{
calc_pwm_page();
activate_pwm_page();
}
if (update_pwm_page || header_pos)
clear_bit(STATUS_LED_PORT, STATUS_LED_BIT); // We are processing a request
else
set_bit(STATUS_LED_PORT, STATUS_LED_BIT); // No request
}
}
|