diff options
Diffstat (limited to 'linux/drivers/media')
-rw-r--r-- | linux/drivers/media/dvb/b2c2/skystar2.c | 2707 |
1 files changed, 2707 insertions, 0 deletions
diff --git a/linux/drivers/media/dvb/b2c2/skystar2.c b/linux/drivers/media/dvb/b2c2/skystar2.c new file mode 100644 index 000000000..7c8d6755e --- /dev/null +++ b/linux/drivers/media/dvb/b2c2/skystar2.c @@ -0,0 +1,2707 @@ +/* + * skystar2.c - driver for the Technisat SkyStar2 PCI DVB card + * based on the FlexCopII by B2C2,Inc. + * + * Copyright (C) 2003 V.C. , skystar@moldova.cc + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public License + * as published by the Free Software Foundation; either version 2.1 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/pci.h> + +#include "dvb_i2c.h" +#include "dvb_frontend.h" +#include "dvb_functions.h" + +#include <linux/dvb/frontend.h> +#include <linux/dvb/dmx.h> +#include "dvb_demux.h" +#include "dmxdev.h" +#include "dvb_filter.h" +#include "dvbdev.h" +#include "demux.h" +#include "dvb_net.h" + + +int debug = 1; +#define dprintk if(debug == 1) printk + +#define SizeOfBufDMA1 0x3AC00 +#define SizeOfBufDMA2 0x758 + +struct DmaQ { + + u32 bus_addr; + u32 head; + u32 tail; + u32 buffer_size; + u8 * buffer; +}; + +struct packet_header_t { + + u32 sync_byte; + u32 transport_error_indicator; + u32 payload_unit_start_indicator; + u32 transport_priority; + u32 pid; + u32 transport_scrambling_control; + u32 adaptation_field_control; + u32 continuity_counter; +}; + +struct adapter { + + struct pci_dev *pdev; + + u8 card_revision; + u32 B2C2_revision; + u32 PidFilterMax; + u32 MacFilterMax; + u32 irq; + u32 io_mem; + u32 io_port; + u8 mac_addr[8]; + u32 dwSramType; + + struct dvb_adapter * dvb_adapter; + struct dvb_demux demux; + struct dmxdev dmxdev; + struct dmx_frontend hw_frontend; + struct dmx_frontend mem_frontend; + struct dvb_i2c_bus *i2c_bus; + struct dvb_net dvbnet; + + struct semaphore i2c_sem; + + struct DmaQ DmaQ1; + struct DmaQ DmaQ2; + + u32 dma_ctrl; + u32 dma_status; + + u32 capturing; + + spinlock_t lock; + + u16 pids[0x27]; + u32 mac_filter; +}; + + +//------------------------------------------------------------------- +void linuxdelayms(u32 usecs) +{ + while ( usecs > 0) + { + udelay(1000); + + usecs--; + } +} + +///////////////////////////////////////////////////////////////////// +// register functions +///////////////////////////////////////////////////////////////////// + +//------------------------------------------------------------------- +void WriteRegDW(struct adapter * adapter, u32 reg, u32 value) +{ + u32 flags; + + save_flags(flags); + cli(); + + writel(value, adapter->io_mem + reg); + + restore_flags(flags); +} + +//------------------------------------------------------------------- +u32 ReadRegDW(struct adapter * adapter, u32 reg) +{ + return readl(adapter->io_mem + reg); +} + +//------------------------------------------------------------------- +u32 WriteRegOp(struct adapter * adapter, u32 reg, u32 operation, u32 andvalue, u32 orvalue) +{ + u32 tmp; + + tmp = ReadRegDW(adapter, reg); + + if ( operation == 1 ) tmp = tmp | orvalue; + if ( operation == 2 ) tmp = tmp & andvalue; + if ( operation == 3 ) tmp = (tmp & andvalue) | orvalue; + + WriteRegDW(adapter, reg, tmp); + + return tmp; +} + +///////////////////////////////////////////////////////////////////// +// I2C +//////////////////////////////////////////////////////////////////// + +//------------------------------------------------------------------- +u32 i2cMainWriteForFlex2(struct adapter * adapter, u32 command, u8 * buf, u32 retries) +{ + u32 i; + u32 value; + + WriteRegDW(adapter, 0x100, 0); + WriteRegDW(adapter, 0x100, command); + + for ( i = 0; i < retries; i++ ) + { + value = ReadRegDW(adapter, 0x100); + + if ( ( value & 0x40000000) == 0 ) + { + if ( ( value & 0x81000000 ) == 0x80000000 ) + { + if ( buf != 0 ) *buf = ( value >> 0x10 ) & 0xff; + + return 1; + } + + } else { + + WriteRegDW(adapter, 0x100, 0); + WriteRegDW(adapter, 0x100, command); + } + } + + return 0; +} + +///////////////////////////////////////////////////////////////////// +// device = 0x10000000 for tuner +// 0x20000000 for eeprom +///////////////////////////////////////////////////////////////////// +//------------------------------------------------------------------- +u32 i2cMainSetup(u32 device, u32 chip_addr, u8 op, u8 addr, u32 value, u32 len) +{ + u32 command; + + command = device | ( (len-1) << 26 ) | ( value << 16 ) | ( addr << 8 ) | chip_addr; + + if ( op != 0 ) command = command | 0x03000000; else command = command | 0x01000000; + + return command; +} + +//------------------------------------------------------------------- +u32 FlexI2cRead4(struct adapter * adapter, u32 device, u32 chip_addr, u16 addr, u8 * buf, u8 len) +{ + u32 command; + u32 value; + + int result, i; + + command = i2cMainSetup(device, chip_addr, 1, addr, 0, len); + + result = i2cMainWriteForFlex2(adapter, command, buf, 100000); + + if ( (result & 0xff) != 0 ) + { + if ( len > 1 ) + { + value = ReadRegDW(adapter, 0x104); + + for ( i = 1; i < len; i++ ) + { + buf[i] = value & 0xff; + value = value >> 8; + } + } + } + + return result; +} + +//------------------------------------------------------------------- +u32 FlexI2cWrite4(struct adapter * adapter, u32 device, u32 chip_addr, u32 addr, u8 * buf, u8 len) +{ + u32 command; + u32 value; + int i; + + if ( len > 1) + { + value = 0; + + for ( i = len; i > 1; i--) + { + value = value << 8; + value = value | buf[i-1]; + } + + WriteRegDW(adapter, 0x104, value); + } + + command = i2cMainSetup(device, chip_addr, 0, addr, buf[0], len); + + return i2cMainWriteForFlex2(adapter, command, 0, 100000); +} + +//------------------------------------------------------------------- +u32 fixChipAddr(u32 device, u32 bus, u32 addr) +{ + if ( device == 0x20000000 ) return bus | ( ( addr >> 8 ) & 3 ); + + return bus; +} + +//------------------------------------------------------------------- +u32 FLEXI2C_read(struct adapter * adapter, u32 device, u32 bus, u32 addr, u8 * buf, u32 len) +{ + u32 ChipAddr; + u32 bytes_to_transfer; + u8 * start; + +// dprintk("%s:\n", __FUNCTION__); + + start = buf; + + while ( len != 0 ) + { + bytes_to_transfer = len; + + if ( bytes_to_transfer > 4 ) bytes_to_transfer = 4; + + ChipAddr = fixChipAddr(device, bus, addr); + + if ( FlexI2cRead4(adapter, device, ChipAddr, addr, buf, bytes_to_transfer) == 0 ) return buf - start; + + buf = buf + bytes_to_transfer; + addr = addr + bytes_to_transfer; + len = len - bytes_to_transfer; + }; + + return buf - start; +} + +//------------------------------------------------------------------- +u32 FLEXI2C_write(struct adapter * adapter, u32 device, u32 bus, u32 addr, u8 * buf, u32 len) +{ + u32 ChipAddr; + u32 bytes_to_transfer; + u8 * start; + +// dprintk("%s:\n", __FUNCTION__); + + start = buf; + + while ( len != 0 ) + { + bytes_to_transfer = len; + + if ( bytes_to_transfer > 4 ) bytes_to_transfer = 4; + + ChipAddr = fixChipAddr(device, bus, addr); + + if ( FlexI2cWrite4(adapter, device, ChipAddr, addr, buf, bytes_to_transfer) == 0 ) return buf - start; + + buf = buf + bytes_to_transfer; + addr = addr + bytes_to_transfer; + len = len - bytes_to_transfer; + } + + return buf - start; +} + +static int master_xfer (struct dvb_i2c_bus * i2c, const struct i2c_msg * msgs, int num) +{ + struct adapter * tmp = i2c->data; + int i, ret=0; + + if (down_interruptible (&tmp->i2c_sem)) return -ERESTARTSYS; + + if(0) + { + dprintk("%s:\n",__FUNCTION__); + + for(i=0; i<num; i++) + { + printk("message %d: flags=%x, addr=0x%04x, buf=%x, len=%d \n", i, msgs[i].flags, msgs[i].addr, (u32)msgs[i].buf, msgs[i].len); + } + } + + // allow only the vp310 frontend to access the bus + if ( ( msgs[0].addr != 0x0E) && ( msgs[0].addr != 0x61 ) ) + { + up (&tmp->i2c_sem); + + return -EREMOTEIO; + } + + if ( ( num == 1 ) && ( msgs[0].buf != NULL ) ) + { + if ( msgs[0].flags == I2C_M_RD ) + { + ret = -EINVAL; + + } else { + + // single writes do have the reg addr in buf[0] and data in buf[1] to buf[n] + ret = FLEXI2C_write(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], &msgs[0].buf[1], msgs[0].len - 1); + + if ( ret != msgs[0].len - 1) + ret = -EREMOTEIO; + else + ret = num; + } + + } else if ( ( num == 2 ) && ( msgs[1].buf != NULL ) ) { + + // i2c reads consist of a reg addr _write_ followed by a data read, so msg[1].flags has to be examined + if ( msgs[1].flags == I2C_M_RD ) + { + ret = FLEXI2C_read(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len); + + } else { + + ret = FLEXI2C_write(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len); + } + + if (ret != msgs[1].len) + ret = -EREMOTEIO; + else + ret = num; + } + + up (&tmp->i2c_sem); + + // master xfer functions always return the number of successfully + // transmitted messages, not the number of transmitted bytes. + // return -EREMOTEIO in case of failure. + return ret; +} + +///////////////////////////////////////////////////////////////////// +// SRAM (Skystar2 rev2.3 has one "ISSI IS61LV256" chip on board, +// but it seems that FlexCopII can work with more than one chip) +///////////////////////////////////////////////////////////////////// +//------------------------------------------------------------------- +u32 SRAMSetNetDest(struct adapter *adapter, u8 dest) +{ + u32 tmp; + + udelay(1000); + + tmp = ( ReadRegDW(adapter, 0x714) & 0xFFFFFFFC ) | ( dest & 3 ); + + udelay(1000); + + WriteRegDW(adapter, 0x714, tmp); + WriteRegDW(adapter, 0x714, tmp); + + udelay(1000); + + return tmp; +} + +//------------------------------------------------------------------- +u32 SRAMSetCaiDest(struct adapter *adapter, u8 dest) +{ + u32 tmp; + + udelay(1000); + + tmp = ( ReadRegDW(adapter, 0x714) & 0xFFFFFFF3 ) | ( ( dest & 3 ) << 2); + + udelay(1000); + udelay(1000); + + WriteRegDW(adapter, 0x714, tmp); + WriteRegDW(adapter, 0x714, tmp); + + udelay(1000); + + return tmp; +} + +//------------------------------------------------------------------- +u32 SRAMSetCaoDest(struct adapter *adapter, u8 dest) +{ + u32 tmp; + + udelay(1000); + + tmp = ( ReadRegDW(adapter, 0x714) & 0xFFFFFFCF ) | ( ( dest & 3 ) << 4 ); + + udelay(1000); + udelay(1000); + + WriteRegDW(adapter, 0x714, tmp); + WriteRegDW(adapter, 0x714, tmp); + + udelay(1000); + + return tmp; +} + +//------------------------------------------------------------------- +u32 SRAMSetMediaDest(struct adapter *adapter, u8 dest) +{ + u32 tmp; + + udelay(1000); + + tmp = ( ReadRegDW(adapter, 0x714) & 0xFFFFFF3F ) | ( ( dest & 3 ) << 6 ); + + udelay(1000); + udelay(1000); + + WriteRegDW(adapter, 0x714, tmp); + WriteRegDW(adapter, 0x714, tmp); + + udelay(1000); + + return tmp; +} + +///////////////////////////////////////////////////////////////////// +// SRAM memory is accessed through a buffer register in the FlexCop +// chip (0x700). This register has the following structure: +// bits 0-14 : address +// bit 15 : read/write flag +// bits 16-23 : 8-bit word to write +// bits 24-27 : = 4 +// bits 28-29 : memory bank selector +// bit 31 : busy flag +//////////////////////////////////////////////////////////////////// +//------------------------------------------------------------------- +void FlexSramWrite(struct adapter * adapter, u32 bank, u32 addr, u8 *buf, u32 len) +{ + u32 i, command, retries; + + for ( i = 0; i < len; i++) + { + command = bank | addr | 0x04000000 | ( *buf << 0x10 ); + + retries = 2; + + while ( ( ( ReadRegDW(adapter, 0x700) & 0x80000000 ) != 0 ) && ( retries > 0 ) ) + { + linuxdelayms(1); + retries--; + }; + + if ( retries == 0 ) printk("%s: SRAM timeout\n", __FUNCTION__); + + WriteRegDW(adapter, 0x700, command); + + buf++; + addr++; + } +} + +//------------------------------------------------------------------- +void FlexSramRead(struct adapter * adapter, u32 bank, u32 addr, u8 *buf, u32 len) +{ + u32 i, command, value, retries; + + for ( i = 0; i < len; i++) + { + command = bank | addr | 0x04008000 ; + + retries = 10000; + + while ( ( ( ReadRegDW(adapter, 0x700) & 0x80000000 ) != 0 ) && ( retries > 0 ) ) + { + linuxdelayms(1); + retries--; + }; + + if ( retries == 0 ) printk("%s: SRAM timeout\n", __FUNCTION__); + + WriteRegDW(adapter, 0x700, command); + + retries = 10000; + + while ( ( ( ReadRegDW(adapter, 0x700) & 0x80000000 ) != 0 ) && ( retries > 0 ) ) + { + linuxdelayms(1); + retries--; + }; + + if ( retries == 0 ) printk("%s: SRAM timeout\n", __FUNCTION__); + + value = ReadRegDW(adapter, 0x700) >> 0x10; + + *buf = ( value & 0xff ); + + addr++; + buf++; + } +} + +//------------------------------------------------------------------- +void SRAM_writeChunk(struct adapter * adapter, u32 addr, u8 * buf, u16 len) +{ + u32 bank; + + bank = 0; + + if ( adapter->dwSramType == 0x20000 ) + { + bank = ( addr & 0x18000 ) << 0x0D; + } + + if ( adapter->dwSramType == 0x00000 ) + { + if ( (addr >> 0x0F) == 0 ) bank = 0x20000000; else bank = 0x10000000; + } + + FlexSramWrite(adapter, bank, addr & 0x7FFF, buf, len); +} + +//------------------------------------------------------------------- +void SRAM_readChunk(struct adapter * adapter, u32 addr, u8 * buf, u16 len) +{ + u32 bank; + + bank = 0; + + if ( adapter->dwSramType == 0x20000 ) + { + bank = ( addr & 0x18000 ) << 0x0D; + } + + if ( adapter->dwSramType == 0x00000 ) + { + if ( ( addr >> 0x0F ) == 0 ) bank = 0x20000000; else bank = 0x10000000; + } + + FlexSramRead(adapter, bank, addr & 0x7FFF, buf, len); +} + +//------------------------------------------------------------------- +void SRAM_read(struct adapter * adapter, u32 addr, u8 * buf, u32 len) +{ + u32 length; + + while ( len != 0 ) + { + length = len; + + // check if the address range belongs to the same + // 32K memory chip. If not, the data is read from + // one chip at a time. + if ( (addr >> 0x0F) != ( (addr+len-1) >> 0x0F ) ) + { + length = ( ( (addr >> 0x0F) + 1 ) << 0x0F ) - addr; + } + + SRAM_readChunk(adapter, addr, buf, length); + + addr = addr + length; + buf = buf + length; + len = len - length; + } +} + +//------------------------------------------------------------------- +void SRAM_write(struct adapter * adapter, u32 addr, u8 * buf, u32 len) +{ + u32 length; + + while ( len != 0 ) + { + length = len; + + // check if the address range belongs to the same + // 32K memory chip. If not, the data is written to + // one chip at a time. + if ( ( addr >> 0x0F ) != ( (addr+len-1) >> 0x0F ) ) + { + length = ( ( ( addr >> 0x0F )+1 ) << 0x0F ) - addr; + } + + SRAM_writeChunk(adapter, addr, buf, length); + + addr = addr + length; + buf = buf + length; + len = len - length; + } +} + +//------------------------------------------------------------------- +void SRAM_setSize(struct adapter * adapter, u32 mask) +{ + WriteRegDW(adapter, 0x71C, ( mask | ( ~0x30000 & ReadRegDW(adapter, 0x71C) ) ) ); +} + +//------------------------------------------------------------------- +u32 SRAM_init(struct adapter * adapter) +{ + u32 tmp; + + tmp = ReadRegDW(adapter, 0x71C); + + WriteRegDW(adapter, 0x71C, 1); + + if ( ReadRegDW(adapter, 0x71C) != 0) + { + WriteRegDW(adapter, 0x71C, tmp); + + adapter->dwSramType = tmp & 0x30000; + + dprintk("%s: dwSramType = %x\n", __FUNCTION__, adapter->dwSramType); + + } else { + + adapter->dwSramType = 0x10000; + + dprintk("%s: dwSramType = %x\n", __FUNCTION__, adapter->dwSramType); + } + + return adapter->dwSramType; +} + +//------------------------------------------------------------------- +int SRAM_testLocation(struct adapter * adapter, u32 mask, u32 addr) +{ + u8 tmp1, tmp2; + + dprintk("%s: mask = %x, addr = %x\n", __FUNCTION__, mask, addr); + + SRAM_setSize(adapter, mask); + SRAM_init(adapter); + + tmp2 = 0xA5; + tmp1 = 0x4F; + + SRAM_write(adapter, addr, &tmp2, 1); + SRAM_write(adapter, addr + 4, &tmp1, 1); + + tmp2 = 0; + + linuxdelayms(20); + + SRAM_read(adapter, addr, &tmp2, 1); + SRAM_read(adapter, addr, &tmp2, 1); + + dprintk("%s: wrote 0xA5, read 0x%2x\n", __FUNCTION__, tmp2); + + if ( tmp2 != 0xA5 ) return 0; + + tmp2 = 0x5A; + tmp1 = 0xF4; + + SRAM_write(adapter, addr, &tmp2, 1); + SRAM_write(adapter, addr + 4, &tmp1, 1); + + tmp2 = 0; + + linuxdelayms(20); + + SRAM_read(adapter, addr, &tmp2, 1); + SRAM_read(adapter, addr, &tmp2, 1); + + dprintk("%s: wrote 0x5A, read 0x%2x\n", __FUNCTION__, tmp2); + + if ( tmp2 != 0x5A ) return 0; + + return 1; +} + +//------------------------------------------------------------------- +u32 SRAM_length(struct adapter * adapter) +{ + if ( adapter->dwSramType == 0x10000 ) return 32768; // 32K + if ( adapter->dwSramType == 0x00000 ) return 65536; // 64K + if ( adapter->dwSramType == 0x20000 ) return 131072; // 128K + + return 32768; // 32K +} + +////////////////////////////////////////////////////////////////////// +// FlexcopII can work with 32K, 64K or 128K of external SRAM memory. +// - for 128K there are 4x32K chips at bank 0,1,2,3. +// - for 64K there are 2x32K chips at bank 1,2. +// - for 32K there is one 32K chip at bank 0. +// +// FlexCop works only with one bank at a time. The bank is selected +// by bits 28-29 of the 0x700 register. +// +// bank 0 covers addresses 0x00000-0x07FFF +// bank 1 covers addresses 0x08000-0x0FFFF +// bank 2 covers addresses 0x10000-0x17FFF +// bank 3 covers addresses 0x18000-0x1FFFF +///////////////////////////////////////////////////////////////////// +//------------------------------------------------------------------- +int SramDetectForFlex2(struct adapter * adapter) +{ + u32 tmp, tmp2, tmp3; + + dprintk("%s:\n", __FUNCTION__); + + tmp = ReadRegDW(adapter, 0x208); + WriteRegDW(adapter, 0x208, 0); + + tmp2 = ReadRegDW(adapter, 0x71C); + + dprintk("%s: tmp2 = %x\n", __FUNCTION__, tmp2); + + WriteRegDW(adapter, 0x71C, 1); + + tmp3 = ReadRegDW(adapter, 0x71C); + + dprintk("%s: tmp3 = %x\n", __FUNCTION__, tmp3); + + WriteRegDW(adapter, 0x71C, tmp2); + + // check for internal SRAM ??? + tmp3--; + if ( tmp3 != 0 ) + { + SRAM_setSize(adapter, 0x10000); + SRAM_init(adapter); + WriteRegDW(adapter, 0x208, tmp); + + dprintk("%s: sram size = 32K\n", __FUNCTION__); + + return 32; + } + + if ( SRAM_testLocation(adapter, 0x20000, 0x18000) != 0 ) + { + SRAM_setSize(adapter, 0x20000); + SRAM_init(adapter); + WriteRegDW(adapter, 0x208, tmp); + + dprintk("%s: sram size = 128K\n", __FUNCTION__); + + return 128; + } + + if ( SRAM_testLocation(adapter, 0x00000, 0x10000) != 0 ) + { + SRAM_setSize(adapter, 0x00000); + SRAM_init(adapter); + WriteRegDW(adapter, 0x208, tmp); + + dprintk("%s: sram size = 64K\n", __FUNCTION__); + + return 64; + } + + if ( SRAM_testLocation(adapter, 0x10000, 0x00000) != 0 ) + { + SRAM_setSize(adapter, 0x10000); + SRAM_init(adapter); + WriteRegDW(adapter, 0x208, tmp); + + dprintk("%s: sram size = 32K\n", __FUNCTION__); + + return 32; + } + + SRAM_setSize(adapter, 0x10000); + SRAM_init(adapter); + WriteRegDW(adapter, 0x208, tmp); + + dprintk("%s: SRAM detection failed. Set to 32K \n", __FUNCTION__); + + return 0; +} + +//------------------------------------------------------------------- +void SLL_detectSramSize(struct adapter * adapter) +{ + SramDetectForFlex2(adapter); +} + +///////////////////////////////////////////////////////////////////// +// EEPROM (Skystar2 has one "24LC08B" chip on board) +//////////////////////////////////////////////////////////////////// + +//------------------------------------------------------------------- +int EEPROM_write(struct adapter * adapter, u16 addr, u8 *buf, u16 len) +{ + return FLEXI2C_write(adapter, 0x20000000, 0x50, addr, buf, len); +} + +//------------------------------------------------------------------- +int EEPROM_read(struct adapter * adapter, u16 addr, u8 *buf, u16 len) +{ + return FLEXI2C_read(adapter, 0x20000000, 0x50, addr, buf, len); +} + +//------------------------------------------------------------------- +u8 calc_LRC(u8 * buf, u32 len) +{ + u32 i; + u8 sum; + + sum = 0; + + for (i = 0; i < len; i++) sum = sum ^ buf[i]; + + return sum; +} + +//------------------------------------------------------------------- +int EEPROM_LRC_read(struct adapter * adapter, u32 addr, u32 len, u8 * buf, u32 retries) +{ + int i; + + for ( i = 0; i < retries; i++) + { + if ( EEPROM_read(adapter, addr, buf, len) == len ) + { + if ( calc_LRC(buf, len-1) == buf[len-1] ) return 1; + } + } + + return 0; +} + +//------------------------------------------------------------------- +int EEPROM_LRC_write(struct adapter * adapter, u32 addr, u32 len, u8 * wbuf, u8 * rbuf, u32 retries) +{ + int i; + + for ( i = 0; i < retries; i++) + { + if ( EEPROM_write(adapter, addr, wbuf, len) == len ) + { + if ( EEPROM_LRC_read(adapter, addr, len, rbuf, retries) == 1 ) return 1; + } + } + + return 0; +} + +///////////////////////////////////////////////////////////////////// +// These functions could be called from the initialization routine +// to unlock SkyStar2 cards, locked by "Europe On Line". +// +// in cards from "Europe On Line" the key is: +// +// u8 key[20] = { +// 0xB2, 0x01, 0x00, 0x00, +// 0x00, 0x00, 0x00, 0x00, +// 0x00, 0x00, 0x00, 0x00, +// 0x00, 0x00, 0x00, 0x00, +// }; +// +// LRC = 0xB3; +// +// in unlocked cards the key is: +// +// u8 key[20] = { +// 0xB2, 0x00, 0x00, 0x00, +// 0x00, 0x00, 0x00, 0x00, +// 0x00, 0x00, 0x00, 0x00, +// 0x00, 0x00, 0x00, 0x00, +// }; +// +// LRC = 0xB2; +///////////////////////////////////////////////////////////////////// + +//------------------------------------------------------------------- +int EEPROM_writeKey(struct adapter * adapter, u8 * key, u32 len) +{ + u8 rbuf[20]; + u8 wbuf[20]; + + if ( len != 16 ) return 0; + + memcpy(wbuf, key, len); + + wbuf[16] = 0; + wbuf[17] = 0; + wbuf[18] = 0; + wbuf[19] = calc_LRC(wbuf, 19); + + return EEPROM_LRC_write(adapter, 0x3E4, 20, wbuf, rbuf, 4); +} + +//------------------------------------------------------------------- +int EEPROM_readKey(struct adapter * adapter, u8 * key, u32 len) +{ + u8 buf[20]; + + if ( len != 16 ) return 0; + + if ( EEPROM_LRC_read(adapter, 0x3E4, 20, buf, 4) == 0 ) return 0; + + memcpy(key, buf, len); + + return 1; +} + +//------------------------------------------------------------------- +int EEPROM_getMacAddr(struct adapter * adapter, char type, u8 * mac) +{ + u8 tmp[8]; + + if ( EEPROM_LRC_read(adapter, 0x3F8, 8, tmp, 4) != 0 ) + { + if ( type != 0 ) + { + mac[0] = tmp[0]; + mac[1] = tmp[1]; + mac[2] = tmp[2]; + mac[3] = 0xFE; + mac[4] = 0xFF; + mac[5] = tmp[3]; + mac[6] = tmp[4]; + mac[7] = tmp[5]; + + } else { + + mac[0] = tmp[0]; + mac[1] = tmp[1]; + mac[2] = tmp[2]; + mac[3] = tmp[3]; + mac[4] = tmp[4]; + mac[5] = tmp[5]; + } + + return 1; + + } else { + + if ( type == 0 ) + { + memset(mac, 0, 6); + + } else { + + memset(mac, 0, 8); + } + + return 0; + } +} + +//------------------------------------------------------------------- +char EEPROM_setMacAddr(struct adapter * adapter, char type, u8 * mac) +{ + u8 tmp[8]; + + if ( type != 0 ) + { + tmp[0] = mac[0]; + tmp[1] = mac[1]; + tmp[2] = mac[2]; + tmp[3] = mac[5]; + tmp[4] = mac[6]; + tmp[5] = mac[7]; + + } else { + + tmp[0] = mac[0]; + tmp[1] = mac[1]; + tmp[2] = mac[2]; + tmp[3] = mac[3]; + tmp[4] = mac[4]; + tmp[5] = mac[5]; + } + + tmp[6] = 0; + tmp[7] = calc_LRC(tmp, 7); + + if ( EEPROM_write(adapter, 0x3F8, tmp, 8) == 8 ) return 1; + + return 0; +} + +///////////////////////////////////////////////////////////////////// +// PID filter +///////////////////////////////////////////////////////////////////// + +//------------------------------------------------------------------- +void FilterEnableStream1Filter(struct adapter * adapter, u32 op) +{ + dprintk("%s: op=%x\n", __FUNCTION__, op); + + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000001, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000001); + } +} + +//------------------------------------------------------------------- +void FilterEnableStream2Filter(struct adapter * adapter, u32 op) +{ + dprintk("%s: op=%x\n", __FUNCTION__, op); + + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000002, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000002); + } +} + +//------------------------------------------------------------------- +void FilterEnablePcrFilter(struct adapter * adapter, u32 op) +{ + dprintk("%s: op=%x\n", __FUNCTION__, op); + + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000004, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000004); + } +} + +//------------------------------------------------------------------- +void FilterEnablePmtFilter(struct adapter * adapter, u32 op) +{ + dprintk("%s: op=%x\n", __FUNCTION__, op); + + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000008, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000008); + } +} + +//------------------------------------------------------------------- +void FilterEnableEmmFilter(struct adapter * adapter, u32 op) +{ + dprintk("%s: op=%x\n", __FUNCTION__, op); + + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000010, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000010); + } +} + +//------------------------------------------------------------------- +void FilterEnableEcmFilter(struct adapter * adapter, u32 op) +{ + dprintk("%s: op=%x\n", __FUNCTION__, op); + + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000020, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000020); + } +} + +//------------------------------------------------------------------- +void FilterEnableNullFilter(struct adapter *adapter, u32 op) +{ + dprintk("%s: op=%x\n", __FUNCTION__, op); + + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000040, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000040); + } +} + +//------------------------------------------------------------------- +void FilterEnableMaskFilter(struct adapter *adapter, u32 op) +{ + dprintk("%s: op=%x\n", __FUNCTION__, op); + + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000080, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000080); + } +} + + +//------------------------------------------------------------------- +void CtrlEnableMAC(struct adapter *adapter, u32 op) +{ + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00004000, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00004000); + } +} + +//------------------------------------------------------------------- +int CASetMacDstAddrFilter(struct adapter *adapter, u8 *mac) +{ + u32 tmp1, tmp2; + + tmp1 = ( mac[3] << 0x18 ) | ( mac[2] << 0x10 ) | ( mac[1] << 0x08 ) | mac[0]; + tmp2 = ( mac[5] << 0x08 ) | mac[4]; + + WriteRegDW(adapter, 0x418, tmp1); + WriteRegDW(adapter, 0x41C, tmp2); + + return 0; +} + +//------------------------------------------------------------------- +void SetIgnoreMACFilter(struct adapter * adapter, u8 op) +{ + if ( op != 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00004000, 0); + + adapter->mac_filter = 1; + + } else { + + if ( adapter->mac_filter != 0 ) + { + adapter->mac_filter = 0; + + WriteRegOp(adapter, 0x208, 1, 0, 0x00004000); + } + } +} + +//------------------------------------------------------------------- +void CheckNullFilterEnable(struct adapter * adapter) +{ + FilterEnableNullFilter(adapter, 1); + FilterEnableMaskFilter(adapter, 1); +} + +//------------------------------------------------------------------- +void InitPIDsInfo(struct adapter *adapter) +{ + int i; + + for ( i = 0; i < 0x27; i++) adapter->pids[i] = 0x1FFF; +} + +//------------------------------------------------------------------- +u32 CheckPID(struct adapter * adapter, u16 pid) +{ + u32 i; + + if ( pid == 0x1FFF ) return 0; + + for ( i = 0; i < 0x27; i++ ) + { + if ( adapter->pids[i] == pid ) return 1; + } + + return 0; +} + +//------------------------------------------------------------------- +u32 PidSetGroupPID(struct adapter *adapter, u32 pid) +{ + u32 value; + + dprintk("%s: pid=%x\n", __FUNCTION__, pid); + + value = ( pid & 0x3FFF) | ( ReadRegDW(adapter, 0x30C) & 0xFFFF0000 ); + + WriteRegDW(adapter, 0x30C, value); + + return value; +} + +//------------------------------------------------------------------- +u32 PidSetGroupMASK(struct adapter *adapter, u32 pid) +{ + u32 value; + + dprintk("%s: pid=%x\n", __FUNCTION__, pid); + + value = ( ( pid & 0x3FFF ) << 0x10 ) | (ReadRegDW(adapter, 0x30C) & 0xFFFF ); + + WriteRegDW(adapter, 0x30C, value); + + return value; +} + +//------------------------------------------------------------------- +u32 PidSetStream1PID(struct adapter *adapter, u32 pid) +{ + u32 value; + + dprintk("%s: pid=%x\n", __FUNCTION__, pid); + + value = ( pid & 0x3FFF ) | ( ReadRegDW(adapter, 0x300) & 0xFFFFC000 ); + + WriteRegDW(adapter, 0x300, value); + + return value; +} + +//------------------------------------------------------------------- +u32 PidSetStream2PID(struct adapter *adapter, u32 pid) +{ + u32 value; + + dprintk("%s: pid=%x\n", __FUNCTION__, pid); + + value = ( ( pid & 0x3FFF ) << 0x10 ) | ( ReadRegDW(adapter, 0x300) & 0xFFFF ); + + WriteRegDW(adapter, 0x300, value); + + return value; +} + +//------------------------------------------------------------------- +u32 PidSetPcrPID(struct adapter *adapter, u32 pid) +{ + u32 value; + + dprintk("%s: pid=%x\n", __FUNCTION__, pid); + + value = (pid & 0x3FFF) | ( ReadRegDW(adapter, 0x304) & 0xFFFFC000 ); + + WriteRegDW(adapter, 0x304, value); + + return value; +} + +//------------------------------------------------------------------- +u32 PidSetPmtPID(struct adapter *adapter, u32 pid) +{ + u32 value; + + dprintk("%s: pid=%x\n", __FUNCTION__, pid); + + value = ( (pid & 0x3FFF) << 0x10) | ( ReadRegDW(adapter, 0x304) & 0x3FFF ); + + WriteRegDW(adapter, 0x304, value); + + return value; +} + +//------------------------------------------------------------------- +u32 PidSetEmmPID(struct adapter *adapter, u32 pid) +{ + u32 value; + + dprintk("%s: pid=%x\n", __FUNCTION__, pid); + + value = (pid & 0xFFFF) | ( ReadRegDW(adapter, 0x308) & 0xFFFF0000 ); + + WriteRegDW(adapter, 0x308, value); + + return value; +} + +//------------------------------------------------------------------- +u32 PidSetEcmPID(struct adapter *adapter, u32 pid) +{ + u32 value; + + dprintk("%s: pid=%x\n", __FUNCTION__, pid); + + value = (pid << 0x10 ) | ( ReadRegDW(adapter, 0x308) & 0xFFFF ); + + WriteRegDW(adapter, 0x308, value); + + return value; +} + +//------------------------------------------------------------------- +u32 PidGetStream1PID(struct adapter *adapter) +{ + return ReadRegDW(adapter, 0x300) & 0x0000FFFF; +} + +//------------------------------------------------------------------- +u32 PidGetStream2PID(struct adapter *adapter) +{ + return ReadRegDW(adapter, 0x300) >> 0x10; +} + +//------------------------------------------------------------------- +u32 PidGetPcrPID(struct adapter *adapter) +{ + return ReadRegDW(adapter, 0x304) & 0x0000FFFF; +} + +//------------------------------------------------------------------- +u32 PidGetPmtPID(struct adapter *adapter) +{ + return ReadRegDW(adapter, 0x304) >> 0x10; +} + +//------------------------------------------------------------------- +u32 PidGetEmmPID(struct adapter *adapter) +{ + return ReadRegDW(adapter, 0x308) & 0x0000FFFF; +} + +//------------------------------------------------------------------- +u32 PidGetEcmPID(struct adapter *adapter) +{ + return ReadRegDW(adapter, 0x308) >> 0x10; +} + +//------------------------------------------------------------------- +u32 PidGetGroupPID(struct adapter *adapter) +{ + return ReadRegDW(adapter, 0x30C) & 0x0000FFFF; +} + +//------------------------------------------------------------------- +u32 PidGetGroupMASK(struct adapter *adapter) +{ + return ReadRegDW(adapter, 0x30C) >> 0x10; +} + +//------------------------------------------------------------------- +void ResetHardwarePIDFilter(struct adapter *adapter) +{ + PidSetStream1PID(adapter, 0x1FFF); + + PidSetStream2PID(adapter, 0x1FFF); + FilterEnableStream2Filter(adapter, 0); + + PidSetPcrPID(adapter, 0x1FFF); + FilterEnablePcrFilter(adapter, 0); + + PidSetPmtPID(adapter, 0x1FFF); + FilterEnablePmtFilter(adapter, 0); + + PidSetEcmPID(adapter, 0x1FFF); + FilterEnableEcmFilter(adapter, 0); + + PidSetEmmPID(adapter, 0x1FFF); + FilterEnableEmmFilter(adapter, 0); +} + +//------------------------------------------------------------------- +void OpenWholeBandwidth(struct adapter * adapter) +{ + PidSetGroupPID(adapter, 0); + + PidSetGroupMASK(adapter, 0); + + FilterEnableMaskFilter(adapter, 1); +} + +//------------------------------------------------------------------- +int AddHwPID(struct adapter * adapter, u32 pid) +{ + dprintk("%s: pid=%d\n", __FUNCTION__, pid); + + if ( pid <= 0x1F ) return 1; + + if ( ( PidGetGroupMASK(adapter) == 0 ) && ( PidGetGroupPID(adapter) == 0 ) ) return 0; + + + if ( ( PidGetStream1PID(adapter) & 0x1FFF ) == 0x1FFF ) + { + PidSetStream1PID(adapter, pid & 0xFFFF ); + + FilterEnableStream1Filter(adapter, 1); + + return 1; + } + + if ( ( PidGetStream2PID(adapter) & 0x1FFF ) == 0x1FFF ) + { + PidSetStream2PID(adapter, ( pid & 0xFFFF ) ); + + FilterEnableStream2Filter(adapter, 1); + + return 1; + } + + if ( ( PidGetPcrPID(adapter) & 0x1FFF ) == 0x1FFF ) + { + PidSetPcrPID(adapter, ( pid & 0xFFFF ) ); + + FilterEnablePcrFilter(adapter, 1); + + return 1; + } + + if ( ( PidGetPmtPID(adapter) & 0x1FFF ) == 0x1FFF ) + { + PidSetPmtPID(adapter, ( pid & 0xFFFF ) ); + + FilterEnablePmtFilter(adapter, 1); + + return 1; + } + + if ( ( PidGetEmmPID(adapter) & 0x1FFF ) == 0x1FFF ) + { + PidSetEmmPID(adapter, ( pid & 0xFFFF ) ); + + FilterEnableEmmFilter(adapter, 1); + + return 1; + } + + if ( ( PidGetEcmPID(adapter) & 0x1FFF ) == 0x1FFF ) + { + PidSetEcmPID(adapter, ( pid & 0xFFFF ) ); + + FilterEnableEcmFilter(adapter, 1); + + return 1; + } + + return -1; +} + +//------------------------------------------------------------------- +int RemoveHwPID(struct adapter * adapter, u32 pid) +{ + dprintk("%s: pid=%d\n", __FUNCTION__, pid); + + if ( pid <= 0x1F ) return 1; + + if ( ( PidGetStream1PID(adapter) & 0x1FFF ) == pid ) + { + PidSetStream1PID(adapter, 0x1FFF); + + return 1; + } + + if ( ( PidGetStream2PID(adapter) & 0x1FFF ) == pid ) + { + PidSetStream2PID(adapter, 0x1FFF); + + FilterEnableStream2Filter(adapter, 0); + + return 1; + } + + if ( ( PidGetPcrPID(adapter) & 0x1FFF ) == pid ) + { + PidSetPcrPID(adapter, 0x1FFF); + + FilterEnablePcrFilter(adapter, 0); + + return 1; + } + + if ( ( PidGetPmtPID(adapter) & 0x1FFF ) == pid ) + { + PidSetPmtPID(adapter, 0x1FFF); + + FilterEnablePmtFilter(adapter, 0); + + return 1; + } + + if ( ( PidGetEmmPID(adapter) & 0x1FFF ) == pid ) + { + PidSetEmmPID(adapter, 0x1FFF); + + FilterEnableEmmFilter(adapter, 0); + + return 1; + } + + if ( ( PidGetEcmPID(adapter) & 0x1FFF ) == pid ) + { + PidSetEcmPID(adapter, 0x1FFF); + + FilterEnableEcmFilter(adapter, 0); + + return 1; + } + + return -1; +} + +//------------------------------------------------------------------------------ +int AddPID(struct adapter * adapter, u32 pid) +{ + int i; + + dprintk("%s: pid=%d\n", __FUNCTION__, pid); + + if ( pid > 0x1FFE ) return -1; + + if ( CheckPID(adapter, pid) == 1 ) return 1; + + for ( i = 0; i < 0x27; i++) + { + if ( adapter->pids[i] == 0x1FFF ) // find free pid filter + { + adapter->pids[i] = pid; + + if ( AddHwPID(adapter, pid) < 0 ) OpenWholeBandwidth(adapter); + + return 1; + } + } + + return -1; +} + +//------------------------------------------------------------------- +int RemovePID(struct adapter * adapter, u32 pid) +{ + u32 i; + + dprintk("%s: pid=%d\n", __FUNCTION__, pid); + + if ( pid > 0x1FFE ) return -1; + + for ( i = 0; i < 0x27; i++) + { + if ( adapter->pids[i] == pid ) + { + adapter->pids[i] = 0x1FFF; + + RemoveHwPID(adapter, pid); + + return 1; + } + } + + return -1; +} + +///////////////////////////////////////////////////////////////////// +// DMA & IRQ +///////////////////////////////////////////////////////////////////// + +//------------------------------------------------------------------- +void CtrlEnableSmc(struct adapter *adapter, u32 op) +{ + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00000800, 0); + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00000800); + } +} + +//------------------------------------------------------------------- +u32 DmaEnableDisableIrq(struct adapter *adapter, u32 flag1, u32 flag2, u32 flag3) +{ + adapter->dma_ctrl = adapter->dma_ctrl & 0x000F0000; + + if ( flag1 == 0 ) + { + if ( flag2 == 0 ) + adapter->dma_ctrl = adapter->dma_ctrl & ~0x00010000; + else + adapter->dma_ctrl = adapter->dma_ctrl | 0x00010000; + + if ( flag3 == 0 ) + adapter->dma_ctrl = adapter->dma_ctrl & ~0x00020000; + else + adapter->dma_ctrl = adapter->dma_ctrl | 0x00020000; + + } else { + + if ( flag2 == 0 ) + adapter->dma_ctrl = adapter->dma_ctrl & ~0x00040000; + else + adapter->dma_ctrl = adapter->dma_ctrl | 0x00040000; + + if ( flag3 == 0 ) + adapter->dma_ctrl = adapter->dma_ctrl & ~0x00080000; + else + adapter->dma_ctrl = adapter->dma_ctrl | 0x00080000; + } + + return adapter->dma_ctrl; +} + +//------------------------------------------------------------------- +u32 IrqDmaEnableDisableIrq(struct adapter *adapter, u32 op) +{ + u32 value; + + value = ReadRegDW(adapter, 0x208) & 0xFFF0FFFF; + + if ( op != 0 ) value = value | ( adapter->dma_ctrl & 0x000F0000); + + WriteRegDW(adapter, 0x208, value); + + return value; +} + +/////////////////////////////////////////////////////////////////////// +// +// FlexCopII has 2 dma channels. DMA1 is used to transfer TS data to +// system memory. +// +// The DMA1 buffer is divided in 2 subbuffers of equal size. +// FlexCopII will transfer TS data to one subbuffer, signal an interrupt +// when the subbuffer is full and continue fillig the second subbuffer. +// +// For DMA1: +// subbuffer size in 32-bit words is stored in the first 24 bits of +// register 0x004. The last 8 bits of register 0x004 contain the number +// of subbuffers. +// +// the first 30 bits of register 0x000 contain the address of the first +// subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, +// when dma1 is enabled. +// +// the first 30 bits of register 0x00C contain the address of the second +// subbuffer. the last 2 bits contain 1. +// +// register 0x008 will contain the address of the subbuffer that was filled +// with TS data, when FlexCopII will generate an interrupt. +// +// For DMA2: +// subbuffer size in 32-bit words is stored in the first 24 bits of +// register 0x014. The last 8 bits of register 0x014 contain the number +// of subbuffers. +// +// the first 30 bits of register 0x010 contain the address of the first +// subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1, +// when dma1 is enabled. +// +// the first 30 bits of register 0x01C contain the address of the second +// subbuffer. the last 2 bits contain 1. +// +// register 0x018 contains the address of the subbuffer that was filled +// with TS data, when FlexCopII generates an interrupt. +// +/////////////////////////////////////////////////////////////////////// + +//------------------------------------------------------------------- +int DmaInitDMA(struct adapter * adapter, u32 dma_channel) +{ + u32 subbuffers, subbufsize, subbuf0, subbuf1; + + if ( dma_channel == 0 ) + { + dprintk("%s: Initializing DMA1 channel\n", __FUNCTION__); + + subbuffers = 2; + + subbufsize = ( ( (adapter->DmaQ1.buffer_size / 2) / 4) << 8 ) | subbuffers; + + subbuf0 = adapter->DmaQ1.bus_addr & 0xFFFFFFFC; + + subbuf1 = ( (adapter->DmaQ1.bus_addr + adapter->DmaQ1.buffer_size / 2) & 0xFFFFFFFC ) | 1; + + dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); + udelay(1000); + WriteRegDW(adapter, 0x000, subbuf0); + + dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8)*4); + udelay(1000); + WriteRegDW(adapter, 0x004, subbufsize); + + dprintk("%s: second subbuffer address = 0x%x\n", __FUNCTION__, subbuf1); + udelay(1000); + WriteRegDW(adapter, 0x00C, subbuf1); + + dprintk("%s: counter = 0x%x\n", __FUNCTION__, adapter->DmaQ1.bus_addr & 0xFFFFFFFC ); + WriteRegDW(adapter, 0x008, adapter->DmaQ1.bus_addr & 0xFFFFFFFC); + udelay(1000); + + if ( subbuffers == 0 ) DmaEnableDisableIrq(adapter, 0, 1, 0); else DmaEnableDisableIrq(adapter, 0, 1, 1); + + IrqDmaEnableDisableIrq(adapter, 1); + + SRAMSetMediaDest(adapter, 1); + SRAMSetNetDest(adapter, 1); + SRAMSetCaiDest(adapter, 2); + SRAMSetCaoDest(adapter, 2); + } + + if ( dma_channel == 1 ) + { + dprintk("%s: Initializing DMA2 channel\n", __FUNCTION__); + + subbuffers = 2; + + subbufsize = ( (( adapter->DmaQ2.buffer_size / 2 ) / 4 ) << 8 ) | subbuffers; + + subbuf0 = adapter->DmaQ2.bus_addr & 0xFFFFFFFC; + + subbuf1 = ( ( adapter->DmaQ2.bus_addr + adapter->DmaQ2.buffer_size / 2 ) & 0xFFFFFFFC ) | 1; + + dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0); + udelay(1000); + WriteRegDW(adapter, 0x010, subbuf0); + + dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8)*4); + udelay(1000); + WriteRegDW(adapter, 0x014, subbufsize); + + dprintk("%s: second buffer address = 0x%x\n", __FUNCTION__, subbuf1); + udelay(1000); + WriteRegDW(adapter, 0x01C, subbuf1); + + + SRAMSetCaiDest(adapter, 2); + } + + return 0; +} + +//------------------------------------------------------------------- +void CtrlEnableReceiveData(struct adapter *adapter, u32 op) +{ + if ( op == 0 ) + { + WriteRegOp(adapter, 0x208, 2, ~0x00008000, 0); + + adapter->dma_status = adapter->dma_status & ~0x00000004; + + } else { + + WriteRegOp(adapter, 0x208, 1, 0, 0x00008000); + + adapter->dma_status = adapter->dma_status | 0x00000004; + } +} + +/////////////////////////////////////////////////////////////////////////////// +// bit 0 of dma_mask is set to 1 if dma1 channel has to be enabled/disabled +// bit 1 of dma_mask is set to 1 if dma2 channel has to be enabled/disabled +//------------------------------------------------------------------- +void DmaStartStop0x2102(struct adapter *adapter, u32 dma_mask, u32 start_stop) +{ + u32 dma_enable, dma1_enable, dma2_enable; + + dprintk("%s: dma_mask=%x\n", __FUNCTION__, dma_mask); + + if ( start_stop == 1 ) + { + dprintk("%s: starting dma\n", __FUNCTION__); + + dma1_enable = 0; + dma2_enable = 0; + + if ( ( ( dma_mask & 1 ) != 0 ) && ( ( adapter->dma_status & 1 ) == 0 ) && ( adapter->DmaQ1.bus_addr != 0 ) ) + { + adapter->dma_status = adapter->dma_status | 1; + dma1_enable = 1; + } + + if ( ( ( dma_mask & 2 ) != 0 ) && ( ( adapter->dma_status & 2 ) == 0 ) && ( adapter->DmaQ2.bus_addr != 0 ) ) + { + adapter->dma_status = adapter->dma_status | 2; + dma2_enable = 1; + } + + // enable dma1 and dma2 + if ( ( dma1_enable == 1 ) && ( dma2_enable == 1 ) ) + { + WriteRegDW(adapter, 0x000, adapter->DmaQ1.bus_addr | 1 ); + WriteRegDW(adapter, 0x00C, ( adapter->DmaQ1.bus_addr + adapter->DmaQ1.buffer_size/2 ) | 1); + WriteRegDW(adapter, 0x010, adapter->DmaQ2.bus_addr | 1); + + CtrlEnableReceiveData(adapter, 1); + + return; + } + + // enable dma1 + if ( ( dma1_enable == 1 ) && ( dma2_enable == 0 ) ) + { + WriteRegDW(adapter, 0x000, adapter->DmaQ1.bus_addr | 1); + WriteRegDW(adapter, 0x00C, ( adapter->DmaQ1.bus_addr + adapter->DmaQ1.buffer_size/2 ) | 1 ); + + CtrlEnableReceiveData(adapter, 1); + + return; + } + + // enable dma2 + if ( ( dma1_enable == 0 ) && ( dma2_enable == 1 ) ) + { + WriteRegDW(adapter, 0x010, adapter->DmaQ2.bus_addr | 1); + + CtrlEnableReceiveData(adapter, 1); + + return; + } + + // start dma + if ( ( dma1_enable == 0 ) && ( dma2_enable == 0 ) ) + { + CtrlEnableReceiveData(adapter, 1); + + return; + } + + } else { + + dprintk("%s: stoping dma\n", __FUNCTION__); + + dma_enable = adapter->dma_status & 0x00000003; + + if ( ( ( dma_mask & 1 ) != 0 ) && ( ( adapter->dma_status & 1 ) != 0 ) ) + { + dma_enable = dma_enable & 0xFFFFFFFE; + } + + if ( ( ( dma_mask & 2 ) != 0 ) && ( ( adapter->dma_status & 2 ) != 0 ) ) + { + dma_enable = dma_enable & 0xFFFFFFFD; + } + + //stop dma + if ( ( dma_enable == 0 ) && ( ( adapter->dma_status & 4 ) != 0 ) ) + { + CtrlEnableReceiveData(adapter, 0); + + udelay(3000); + } + + //disable dma1 + if ( ( ( dma_mask & 1 ) != 0 ) && ( ( adapter->dma_status & 1 ) != 0 ) && ( adapter->DmaQ1.bus_addr != 0 ) ) + { + WriteRegDW(adapter, 0x000, adapter->DmaQ1.bus_addr); + WriteRegDW(adapter, 0x00C, ( adapter->DmaQ1.bus_addr + adapter->DmaQ1.buffer_size/2 ) | 1 ); + + adapter->dma_status = adapter->dma_status & ~0x00000001; + } + + //disable dma2 + if ( ( ( dma_mask & 2 ) != 0 ) && ( ( adapter->dma_status & 2 ) != 0 ) && ( adapter->DmaQ2.bus_addr != 0 ) ) + { + WriteRegDW(adapter, 0x010, adapter->DmaQ2.bus_addr); + + adapter->dma_status = adapter->dma_status & ~0x00000002; + } + } +} + +//------------------------------------------------------------------- +void OpenStream(struct adapter * adapter, u32 pid) +{ + u32 dma_mask; + + if ( adapter->capturing == 0 ) adapter->capturing = 1; + + FilterEnableMaskFilter(adapter, 1); + + AddPID(adapter, pid); + + dprintk("%s: adapter->dma_status=%x\n", __FUNCTION__, adapter->dma_status); + + if ( ( adapter->dma_status & 7 ) != 7 ) + { + dma_mask = 0; + + if ( ( ( adapter->dma_status & 0x10000000 ) != 0 ) && ( ( adapter->dma_status & 1 ) == 0 ) ) + { + dma_mask = dma_mask | 1; + + adapter->DmaQ1.head = 0; + adapter->DmaQ1.tail = 0; + + memset(adapter->DmaQ1.buffer, 0, adapter->DmaQ1.buffer_size); + } + + if ( ( ( adapter->dma_status & 0x20000000 ) != 0 ) && ( ( adapter->dma_status & 2 ) == 0 ) ) + { + dma_mask = dma_mask | 2; + + adapter->DmaQ2.head = 0; + adapter->DmaQ2.tail = 0; + } + + if ( dma_mask != 0 ) + { + IrqDmaEnableDisableIrq(adapter, 1); + + DmaStartStop0x2102(adapter, dma_mask, 1); + } + } +} + +//------------------------------------------------------------------- +void CloseStream(struct adapter * adapter, u32 pid) +{ + u32 dma_mask; + + if ( adapter->capturing != 0 ) adapter->capturing = 0; + + dprintk("%s: dma_status=%x\n", __FUNCTION__, adapter->dma_status); + + dma_mask = 0; + + if ( ( adapter->dma_status & 1 ) != 0 ) dma_mask = dma_mask | 0x00000001; + if ( ( adapter->dma_status & 2 ) != 0 ) dma_mask = dma_mask | 0x00000002; + + if ( dma_mask != 0 ) + { + DmaStartStop0x2102(adapter, dma_mask, 0); + } + + RemovePID(adapter, pid); +} + +//------------------------------------------------------------------- +u32 InterruptServiceDMA1(struct adapter *adapter) +{ + struct dvb_demux * dvbdmx = &adapter->demux;; + struct packet_header_t packet_header; + + int nCurDmaCounter; + u32 nNumBytesParsed; + u32 nNumNewBytesTransferred; + u32 dwDefaultPacketSize = 188; + u8 gbTmpBuffer[188]; + u8 *pbDMABufCurPos; + + nCurDmaCounter = readl(adapter->io_mem + 0x008) - adapter->DmaQ1.bus_addr; + nCurDmaCounter = ( nCurDmaCounter / dwDefaultPacketSize ) * dwDefaultPacketSize; + + if ( ( nCurDmaCounter < 0 ) || ( nCurDmaCounter > adapter->DmaQ1.buffer_size) ) + { + dprintk("%s: dma counter outside dma buffer\n", __FUNCTION__); + + return 1; + } + + adapter->DmaQ1.head = nCurDmaCounter; + + if ( adapter->DmaQ1.tail <= nCurDmaCounter ) + { + nNumNewBytesTransferred = nCurDmaCounter - adapter->DmaQ1.tail; + + } else { + + nNumNewBytesTransferred = (adapter->DmaQ1.buffer_size - adapter->DmaQ1.tail) + nCurDmaCounter; + } + +// dprintk("%s: nCurDmaCounter = %d\n" , __FUNCTION__, nCurDmaCounter); +// dprintk("%s: DmaQ1.tail = %d\n" , __FUNCTION__, adapter->DmaQ1.tail): +// dprintk("%s: BytesTransferred = %d\n" , __FUNCTION__, nNumNewBytesTransferred); + + if ( nNumNewBytesTransferred < dwDefaultPacketSize ) return 0; + + nNumBytesParsed = 0; + + while ( nNumBytesParsed < nNumNewBytesTransferred ) + { + pbDMABufCurPos = adapter->DmaQ1.buffer + adapter->DmaQ1.tail; + + if ( adapter->DmaQ1.buffer + adapter->DmaQ1.buffer_size < adapter->DmaQ1.buffer + adapter->DmaQ1.tail + 188) + { + memcpy(gbTmpBuffer, adapter->DmaQ1.buffer + adapter->DmaQ1.tail, adapter->DmaQ1.buffer_size - adapter->DmaQ1.tail); + memcpy(gbTmpBuffer + (adapter->DmaQ1.buffer_size - adapter->DmaQ1.tail), adapter->DmaQ1.buffer, ( 188 - ( adapter->DmaQ1.buffer_size - adapter->DmaQ1.tail ) ) ); + + pbDMABufCurPos = gbTmpBuffer; + } + + if ( adapter->capturing != 0 ) + { + u32 * dq = (u32 *)pbDMABufCurPos; + + packet_header.sync_byte = *dq & 0x000000FF; + packet_header.transport_error_indicator = *dq & 0x00008000; + packet_header.payload_unit_start_indicator = *dq & 0x00004000; + packet_header.transport_priority = *dq & 0x00002000; + packet_header.pid = ( ( *dq & 0x00FF0000 ) >> 0x10 ) | ( *dq & 0x00001F00 ); + packet_header.transport_scrambling_control = *dq >> 0x1E; + packet_header.adaptation_field_control = ( *dq & 0x30000000 ) >> 0x1C; + packet_header.continuity_counter = ( *dq & 0x0F000000 ) >> 0x18; + + if ( ( packet_header.sync_byte == 0x47 ) && + ( packet_header.transport_error_indicator == 0 ) && + ( packet_header.pid != 0x1FFF ) ) + { + if ( CheckPID(adapter, packet_header.pid & 0x0000FFFF) != 0 ) + { + dvb_dmx_swfilter_packets(dvbdmx, pbDMABufCurPos, dwDefaultPacketSize/188); + + } else { + +// dprintk("%s: pid=%x\n", __FUNCTION__, packet_header.pid); + } + } + } + + nNumBytesParsed = nNumBytesParsed + dwDefaultPacketSize; + + adapter->DmaQ1.tail = adapter->DmaQ1.tail + dwDefaultPacketSize; + + if ( adapter->DmaQ1.tail >= adapter->DmaQ1.buffer_size ) adapter->DmaQ1.tail = adapter->DmaQ1.tail - adapter->DmaQ1.buffer_size; + }; + + return 1; +} + +//------------------------------------------------------------------- +void InterruptServiceDMA2(struct adapter *adapter) +{ + printk("%s:\n", __FUNCTION__); +} + +//------------------------------------------------------------------- +void isr(int irq, void *dev_id, struct pt_regs *regs) +{ + struct adapter *tmp = dev_id; + + u32 value; + +// dprintk("%s:\n", __FUNCTION__); + + spin_lock_irq(&tmp->lock); + + while ( ( ( value = ReadRegDW(tmp, 0x20C) ) & 0x0F ) != 0 ) + { + if ( ( value & 0x03 ) != 0 ) InterruptServiceDMA1(tmp); + if ( ( value & 0x0C ) != 0 ) InterruptServiceDMA2(tmp); + } + + spin_unlock_irq(&tmp->lock); +} + + +//------------------------------------------------------------------- +void InitDmaQueue(struct adapter *adapter) +{ + dma_addr_t dma_addr; + + + if ( adapter->DmaQ1.buffer != 0 ) return; + + adapter->DmaQ1.head = 0; + adapter->DmaQ1.tail = 0; + adapter->DmaQ1.buffer = 0; + + adapter->DmaQ1.buffer = pci_alloc_consistent(adapter->pdev, SizeOfBufDMA1 + 0x80, &dma_addr); + + if ( adapter->DmaQ1.buffer != 0 ) + { + memset(adapter->DmaQ1.buffer, 0, SizeOfBufDMA1); + + adapter->DmaQ1.bus_addr = dma_addr; + adapter->DmaQ1.buffer_size = SizeOfBufDMA1; + + DmaInitDMA(adapter, 0); + + adapter->dma_status = adapter->dma_status | 0x10000000; + + dprintk("%s: allocated dma buffer at 0x%x, length=%d\n", __FUNCTION__, (int)adapter->DmaQ1.buffer, SizeOfBufDMA1); + + } else { + + adapter->dma_status = adapter->dma_status & ~0x10000000; + } + + + if ( adapter->DmaQ2.buffer != 0 ) return; + + adapter->DmaQ2.head = 0; + adapter->DmaQ2.tail = 0; + adapter->DmaQ2.buffer = 0; + + adapter->DmaQ2.buffer = pci_alloc_consistent(adapter->pdev, SizeOfBufDMA2 + 0x80, &dma_addr); + + if ( adapter->DmaQ2.buffer != 0 ) + { + memset(adapter->DmaQ2.buffer, 0, SizeOfBufDMA2); + + adapter->DmaQ2.bus_addr = dma_addr; + adapter->DmaQ2.buffer_size = SizeOfBufDMA2; + + DmaInitDMA(adapter, 1); + + adapter->dma_status = adapter->dma_status | 0x20000000; + + dprintk("%s: allocated dma buffer at 0x%x, length=%d\n", __FUNCTION__, (int)adapter->DmaQ2.buffer, (int)SizeOfBufDMA2); + + } else { + + adapter->dma_status = adapter->dma_status & ~0x20000000; + } +} + +//------------------------------------------------------------------- +void FreeDmaQueue(struct adapter *adapter) +{ + if ( adapter->DmaQ1.buffer != 0 ) + { + pci_free_consistent(adapter->pdev, SizeOfBufDMA1 + 0x80, adapter->DmaQ1.buffer, adapter->DmaQ1.bus_addr); + + adapter->DmaQ1.bus_addr = 0; + adapter->DmaQ1.head = 0; + adapter->DmaQ1.tail = 0; + adapter->DmaQ1.buffer_size = 0; + adapter->DmaQ1.buffer = 0; + } + + if ( adapter->DmaQ2.buffer != 0 ) + { + pci_free_consistent(adapter->pdev, SizeOfBufDMA2 + 0x80, adapter->DmaQ2.buffer, adapter->DmaQ2.bus_addr); + + adapter->DmaQ2.bus_addr = 0; + adapter->DmaQ2.head = 0; + adapter->DmaQ2.tail = 0; + adapter->DmaQ2.buffer_size = 0; + adapter->DmaQ2.buffer = 0; + } +} + +//------------------------------------------------------------------- +void FreeAdapterObject(struct adapter *adapter) +{ + dprintk("%s:\n", __FUNCTION__); + + CloseStream(adapter, 0); + + if ( adapter->irq != 0 ) free_irq(adapter->irq, adapter); + + FreeDmaQueue(adapter); + + if ( adapter->io_mem != 0 ) iounmap((void *)adapter->io_mem); + + if ( adapter != 0 ) kfree(adapter); +} + +//------------------------------------------------------------------- +int ClaimAdapter(struct adapter *adapter) +{ + struct pci_dev *pdev = adapter->pdev; + + u16 var; + + if ( !request_region(pci_resource_start(pdev,1), pci_resource_len(pdev,1), pdev->name) ) return -EBUSY; + + if ( !request_mem_region(pci_resource_start(pdev,0), pci_resource_len(pdev,0), pdev->name) ) return -EBUSY; + + + pci_read_config_byte(pdev, PCI_CLASS_REVISION, &adapter->card_revision); + + dprintk("%s: card revision %x \n", __FUNCTION__, adapter->card_revision); + + if ( pci_enable_device(pdev) ) return -EIO; + + pci_read_config_word(pdev, 4, &var); + + if ( ( var & 4 ) == 0 ) pci_set_master(pdev); + + adapter->io_port = pdev->resource[1].start; + + adapter->io_mem = (u32)ioremap( pdev->resource[0].start, 0x800); + + if ( adapter->io_mem == 0 ) + { + dprintk("%s: can not map io memory\n", __FUNCTION__); + + return 2; + } + + dprintk("%s: io memory maped at %x\n", __FUNCTION__, adapter->io_mem); + + return 1; +} + +//------------------------------------------------------------------- +int SLL_reset_FlexCOP(struct adapter * adapter) +{ + WriteRegDW(adapter, 0x208, 0); + WriteRegDW(adapter, 0x210, 0xB2FF); + + return 0; +} + +//------------------------------------------------------------------- +u32 DriverInitialize(struct pci_dev * pdev) +{ + struct adapter * adapter; + u32 tmp; + u8 key[16]; + + if ( ! (adapter = kmalloc( sizeof(struct adapter), GFP_KERNEL) ) ) + { + dprintk("%s: out of memory!\n", __FUNCTION__); + + return -ENOMEM; + } + + memset(adapter, 0, sizeof(struct adapter) ); + + pdev->driver_data = adapter; + + adapter->pdev = pdev; + adapter->irq = pdev->irq; + + if ( ( ClaimAdapter(adapter) ) != 1 ) + { + FreeAdapterObject(adapter); + + return 2; + } + + IrqDmaEnableDisableIrq(adapter, 0); + + if ( request_irq(pdev->irq, isr, 0x4000000, "Skystar2", adapter) != 0 ) + { + dprintk("%s: unable to allocate irq=%d !\n", __FUNCTION__, pdev->irq); + + FreeAdapterObject(adapter); + + return 2; + } + + ReadRegDW(adapter, 0x208); + WriteRegDW(adapter, 0x208, 0); + WriteRegDW(adapter, 0x210, 0xB2FF); + WriteRegDW(adapter, 0x208, 0x40); + + InitPIDsInfo(adapter); + + PidSetGroupPID(adapter, 0); + PidSetGroupMASK(adapter, 0x1FE0); + PidSetStream1PID(adapter, 0x1FFF); + PidSetStream2PID(adapter, 0x1FFF); + PidSetPmtPID(adapter, 0x1FFF); + PidSetPcrPID(adapter, 0x1FFF); + PidSetEcmPID(adapter, 0x1FFF); + PidSetEmmPID(adapter, 0x1FFF); + + InitDmaQueue(adapter); + + if ( (adapter->dma_status & 0x30000000) == 0 ) + { + FreeAdapterObject(adapter); + + return 2; + } + + adapter->B2C2_revision = ( ReadRegDW(adapter, 0x204) >> 0x18); + + + if( (adapter->B2C2_revision != 0x82) && (adapter->B2C2_revision != 0xC3) ) + if ( adapter->B2C2_revision != 0x82 ) + { + dprintk("%s: The revision of the FlexCopII chip on your card is - %d\n", __FUNCTION__, adapter->B2C2_revision); + dprintk("%s: This driver works now only with FlexCopII(rev.130) and FlexCopIIB(rev.195).\n", __FUNCTION__); + + FreeAdapterObject(adapter); + + return 2; + } + + tmp = ReadRegDW(adapter, 0x204); + + WriteRegDW(adapter, 0x204, 0); + linuxdelayms(20); + + WriteRegDW(adapter, 0x204, tmp); + linuxdelayms(10); + + tmp = ReadRegDW(adapter, 0x308); + WriteRegDW(adapter, 0x308, 0x4000 | tmp ); + + + adapter->dwSramType = 0x10000; + + SLL_detectSramSize(adapter); + + dprintk("%s sram length = %d, sram type= %x\n", __FUNCTION__, SRAM_length(adapter), adapter->dwSramType); + + SRAMSetMediaDest(adapter, 1); + SRAMSetNetDest(adapter, 1); + + CtrlEnableSmc(adapter, 0); + + SRAMSetCaiDest(adapter, 2); + SRAMSetCaoDest(adapter, 2); + + + DmaEnableDisableIrq(adapter, 1, 0, 0); + + if ( EEPROM_getMacAddr(adapter, 0, adapter->mac_addr) != 0 ) + { + printk("%s MAC address = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x \n", __FUNCTION__, + adapter->mac_addr[0], adapter->mac_addr[1], + adapter->mac_addr[2], adapter->mac_addr[3], + adapter->mac_addr[4], adapter->mac_addr[5], + adapter->mac_addr[6], adapter->mac_addr[7] + ); + + CASetMacDstAddrFilter(adapter, adapter->mac_addr); + CtrlEnableMAC(adapter, 1); + } + + EEPROM_readKey(adapter, key, 16); + + printk("%s key = \n %02x %02x %02x %02x \n %02x %02x %02x %02x \n %02x %02x %02x %02x \n %02x %02x %02x %02x \n", __FUNCTION__, + key[0], key[1], key[2], key[3], + key[4], key[5], key[6], key[7], + key[8], key[9], key[10], key[11], + key[12], key[13], key[14], key[15] + ); + + adapter->lock = SPIN_LOCK_UNLOCKED; + + return 1; +} + +//------------------------------------------------------------------- +void DriverHalt(struct pci_dev * pdev) +{ + struct adapter * adapter; + + adapter = pci_get_drvdata(pdev); + + IrqDmaEnableDisableIrq(adapter, 0); + + CtrlEnableReceiveData(adapter, 0); + + FreeAdapterObject(adapter); + + pci_set_drvdata(pdev, NULL); + + release_region(pci_resource_start(pdev,1), pci_resource_len(pdev,1)); + + release_mem_region(pci_resource_start(pdev,0), pci_resource_len(pdev,0)); +} + +static int dvb_start_feed(struct dvb_demux_feed *dvbdmxfeed) +{ + struct dvb_demux * dvbdmx = dvbdmxfeed->demux; + struct adapter * adapter = (struct adapter *) dvbdmx->priv; + + dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); + + OpenStream(adapter, dvbdmxfeed->pid); + + return 0; +} + +static int dvb_stop_feed(struct dvb_demux_feed *dvbdmxfeed) +{ + struct dvb_demux * dvbdmx = dvbdmxfeed->demux; + struct adapter * adapter = (struct adapter *) dvbdmx->priv; + + dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type); + + CloseStream(adapter, dvbdmxfeed->pid); + + return 0; +} + +///////////////////////////////////////////////////////////////////// +// LNB control +///////////////////////////////////////////////////////////////////// + +//------------------------------------------------------------------- +void set_tuner_tone(struct adapter * adapter, u8 tone) +{ + u16 wzHalfPeriodFor45MHz[] = {0x01FF, 0x0154, 0x00FF, 0x00CC}; + u16 ax; + + dprintk("%s: %u\n", __FUNCTION__, tone); + + switch ( tone ) + { + case 1: ax = wzHalfPeriodFor45MHz[0]; break; + case 2: ax = wzHalfPeriodFor45MHz[1]; break; + case 3: ax = wzHalfPeriodFor45MHz[2]; break; + case 4: ax = wzHalfPeriodFor45MHz[3]; break; + + default: ax = 0; + } + + if ( ax != 0 ) + { + WriteRegDW(adapter, 0x200, ( ( ax << 0x0F ) + ( ax & 0x7FFF ) ) | 0x40000000); + + } else { + + WriteRegDW(adapter, 0x200, 0x40FF8000); + } +} + +//------------------------------------------------------------------- +void set_tuner_polarity(struct adapter * adapter, u8 polarity) +{ + u32 var; + + dprintk("%s : polarity = %u \n", __FUNCTION__, polarity); + + var = ReadRegDW(adapter, 0x204); + + if ( polarity == 0 ) + { + dprintk ("%s: LNB power off\n", __FUNCTION__); + var = var | 1; + }; + + if ( polarity == 1 ) + { + var = var & ~1; + var = var & ~4; + }; + + if ( polarity == 2 ) + { + var = var & ~1; + var = var | 4; + } + + WriteRegDW(adapter, 0x204, var); +} + +static int flexcop_diseqc_ioctl (struct dvb_frontend *fe, unsigned int cmd, void *arg) +{ + struct adapter * adapter = fe->before_after_data; + + switch (cmd) + { + case FE_SLEEP: + { + printk ("%s: FE_SLEEP\n", __FUNCTION__); + + set_tuner_polarity(adapter, 0); + + // return -EOPNOTSUPP, to make DVB core also send "FE_SLEEP" command to frontend. + return -EOPNOTSUPP; + } + + case FE_SET_VOLTAGE: + { + dprintk ("%s: FE_SET_VOLTAGE\n", __FUNCTION__); + + switch ((fe_sec_voltage_t) arg) + { + case SEC_VOLTAGE_13: + + printk ("%s: SEC_VOLTAGE_13, %x\n", __FUNCTION__, SEC_VOLTAGE_13); + + set_tuner_polarity(adapter, 1); + + break; + + case SEC_VOLTAGE_18: + + printk ("%s: SEC_VOLTAGE_18, %x\n", __FUNCTION__, SEC_VOLTAGE_18); + + set_tuner_polarity(adapter, 2); + + break; + + default: + + return -EINVAL; + }; + + break; + } + + case FE_SET_TONE: + { + dprintk ("%s: FE_SET_TONE\n", __FUNCTION__); + + switch ((fe_sec_tone_mode_t) arg) + { + case SEC_TONE_ON: + + printk ("%s: SEC_TONE_ON, %x\n", __FUNCTION__, SEC_TONE_ON); + + set_tuner_tone(adapter, 1); + + break; + + case SEC_TONE_OFF: + + printk ("%s: SEC_TONE_OFF, %x\n", __FUNCTION__, SEC_TONE_OFF); + + set_tuner_tone(adapter, 0); + + break; + + default: + + return -EINVAL; + }; + + break; + } + + default: + + return -EOPNOTSUPP; + }; + + return 0; +} + +//------------------------------------------------------------------- +static int skystar2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) +{ + struct adapter * adapter; + struct dvb_adapter * dvb_adapter; + struct dvb_demux * dvbdemux; + + int ret; + + if ( pdev == NULL ) return -ENODEV; + + if ( DriverInitialize(pdev) != 1 ) return -ENODEV; + + dvb_register_adapter(&dvb_adapter, pdev->name); + + if (dvb_adapter == NULL) + { + printk("%s: Error registering DVB adapter\n", __FUNCTION__); + + DriverHalt(pdev); + + return -ENODEV; + } + + adapter = (struct adapter *) pdev->driver_data; + + adapter->dvb_adapter = dvb_adapter; + + init_MUTEX(&adapter->i2c_sem); + + adapter->i2c_bus = dvb_register_i2c_bus(master_xfer, adapter, adapter->dvb_adapter, 0); + + if (!adapter->i2c_bus) return -ENOMEM; + + dvb_add_frontend_ioctls(adapter->dvb_adapter, flexcop_diseqc_ioctl, NULL, adapter); + + dvbdemux = &adapter->demux; + + dvbdemux->priv = (void *) adapter; + dvbdemux->filternum = 32; + dvbdemux->feednum = 32; + dvbdemux->start_feed = dvb_start_feed; + dvbdemux->stop_feed = dvb_stop_feed; + dvbdemux->write_to_decoder = 0; + dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING); + + dvb_dmx_init(&adapter->demux); + + adapter->hw_frontend.source = DMX_FRONTEND_0; + + adapter->dmxdev.filternum = 32; + adapter->dmxdev.demux = &dvbdemux->dmx; + adapter->dmxdev.capabilities = 0; + + dvb_dmxdev_init(&adapter->dmxdev, adapter->dvb_adapter); + + ret = dvbdemux->dmx.add_frontend(&dvbdemux->dmx, &adapter->hw_frontend); + if (ret < 0) return ret; + + adapter->mem_frontend.source = DMX_MEMORY_FE; + + ret=dvbdemux->dmx.add_frontend(&dvbdemux->dmx, &adapter->mem_frontend); + if (ret < 0) return ret; + + ret = dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, &adapter->hw_frontend); + if (ret < 0) return ret; + + dvb_net_init(adapter->dvb_adapter, &adapter->dvbnet, &dvbdemux->dmx); + return 0; +} + +//------------------------------------------------------------------- +static void skystar2_remove(struct pci_dev * pdev) +{ + struct adapter * adapter; + struct dvb_demux * dvbdemux; + + if ( pdev == NULL ) return; + + adapter = pci_get_drvdata(pdev); + + if ( adapter != NULL ) + { + dvb_net_release(&adapter->dvbnet); + dvbdemux = &adapter->demux; + + dvbdemux->dmx.close(&dvbdemux->dmx); + dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->hw_frontend); + dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->mem_frontend); + + dvb_dmxdev_release(&adapter->dmxdev); + dvb_dmx_release(&adapter->demux); + + if ( adapter->dvb_adapter != NULL ) + { + dvb_remove_frontend_ioctls (adapter->dvb_adapter, flexcop_diseqc_ioctl, NULL); + + if ( adapter->i2c_bus != NULL ) dvb_unregister_i2c_bus(master_xfer, adapter->i2c_bus->adapter, adapter->i2c_bus->id); + + dvb_unregister_adapter (adapter->dvb_adapter); + } + + DriverHalt(pdev); + } +} + + +static struct pci_device_id skystar2_pci_tbl[] = { + { 0x000013D0, 0x00002103, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000 }, + { 0, }, +}; + +static struct pci_driver skystar2_pci_driver = { + .name = "Technisat SkyStar2 driver", + .id_table = skystar2_pci_tbl, + .probe = skystar2_probe, + .remove = skystar2_remove, +}; + +//------------------------------------------------------------------- +static int skystar2_init(void) +{ + printk("\nTechnisat SkyStar2 driver loading\n"); + + return pci_module_init(&skystar2_pci_driver); +} + +//------------------------------------------------------------------- +static void skystar2_cleanup(void) +{ + printk("\nTechnisat SkyStar2 driver unloading\n"); + + pci_unregister_driver(&skystar2_pci_driver); +} + +module_init(skystar2_init); +module_exit(skystar2_cleanup); + +MODULE_DESCRIPTION("Technisat SkyStar2 DVB PCI Driver"); +MODULE_LICENSE("GPL"); +EXPORT_NO_SYMBOLS; |