1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/*
* Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
*
* Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
/* See mt2060_priv.h for details */
/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include "mt2060.h"
#include "mt2060_priv.h"
static int debug=0;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "MT2060: " args); printk("\n"); } } while (0)
// Reads a single register
static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
{
struct i2c_msg msg[2] = {
{ .addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1 },
{ .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
};
if (i2c_transfer(state->i2c, msg, 2) != 2) {
printk(KERN_WARNING "mt2060 I2C read failed\n");
return -EREMOTEIO;
}
return 0;
}
// Writes a single register
static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
{
u8 buf[2];
struct i2c_msg msg = {
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
};
buf[0]=reg;
buf[1]=val;
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mt2060 I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
// Writes a set of consecutive registers
static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
{
struct i2c_msg msg = {
.addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
};
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
return -EREMOTEIO;
}
return 0;
}
// Initialisation sequences
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
static u8 mt2060_config1[] = {
REG_LO1C1,
0x3F, 0x74, 0x00, 0x08, 0x93
};
// FMCG=2, GP2=0, GP1=0
static u8 mt2060_config2[] = {
REG_MISC_CTRL,
0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
};
// VGAG=3, V1CSE=1
static u8 mt2060_config3[] = {
REG_VGAG,
0x33
};
int mt2060_init(struct mt2060_state *state)
{
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
return -EREMOTEIO;
if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
return -EREMOTEIO;
return 0;
}
EXPORT_SYMBOL(mt2060_init);
#ifdef MT2060_SPURCHECK
/* The function below calculates the frequency offset between the output frequency if2
and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
{
int I,J;
int dia,diamin,diff;
diamin=1000000;
for (I = 1; I < 10; I++) {
J = ((2*I*lo1)/lo2+1)/2;
diff = I*(int)lo1-J*(int)lo2;
if (diff < 0) diff=-diff;
dia = (diff-(int)if2);
if (dia < 0) dia=-dia;
if (diamin > dia) diamin=dia;
}
return diamin;
}
#define BANDWIDTH 4000 // kHz
/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
{
u32 Spur,Sp1,Sp2;
int I,J;
I=0;
J=1000;
Spur=mt2060_spurcalc(lo1,lo2,if2);
if (Spur < BANDWIDTH) {
/* Potential spurs detected */
dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
(int)lo1,(int)lo2);
I=1000;
Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
if (Sp1 < Sp2) {
J=-J; I=-I; Spur=Sp2;
} else
Spur=Sp1;
while (Spur < BANDWIDTH) {
I += J;
Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
}
dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
(int)(lo1+I),(int)(lo2+I));
}
return I;
}
#endif
#define IF2 36150 // IF2 frequency = 36.150 MHz
#define FREF 16000 // Quartz oscillator 16 MHz
int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
{
int ret=0;
int i=0;
u32 freq;
u8 lnaband;
u32 f_lo1,f_lo2;
u32 div1,num1,div2,num2;
u8 b[8];
u32 if1;
if1 = state->if1_freq;
b[0] = REG_LO1B1;
b[1] = 0xFF;
mt2060_writeregs(state,b,2);
freq = fep->frequency / 1000; // Hz -> kHz
f_lo1 = freq + if1 * 1000;
f_lo1 = (f_lo1/250)*250;
f_lo2 = f_lo1 - freq - IF2;
f_lo2 = (f_lo2/50)*50;
#ifdef MT2060_SPURCHECK
// LO-related spurs detection and correction
num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
f_lo1 += num1;
f_lo2 += num1;
#endif
//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
div1 = f_lo1 / FREF;
num1 = (64 * (f_lo1 % FREF) )/FREF;
// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
div2 = f_lo2 / FREF;
num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
if (freq <= 95000) lnaband = 0xB0; else
if (freq <= 180000) lnaband = 0xA0; else
if (freq <= 260000) lnaband = 0x90; else
if (freq <= 335000) lnaband = 0x80; else
if (freq <= 425000) lnaband = 0x70; else
if (freq <= 480000) lnaband = 0x60; else
if (freq <= 570000) lnaband = 0x50; else
if (freq <= 645000) lnaband = 0x40; else
if (freq <= 730000) lnaband = 0x30; else
if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
b[0] = REG_LO1C1;
b[1] = lnaband | ((num1 >>2) & 0x0F);
b[2] = div1;
b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
b[4] = num2 >> 4;
b[5] = ((num2 >>12) & 1) | (div2 << 1);
dprintk("IF1: %dMHz",(int)if1);
dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
mt2060_writeregs(state,b,6);
//Waits for pll lock or timeout
i=0;
do {
mt2060_readreg(state,REG_LO_STATUS,b);
if ((b[0] & 0x88)==0x88) break;
msleep(4);
i++;
} while (i<10);
return ret;
}
EXPORT_SYMBOL(mt2060_set);
/* from usbsnoop.log */
static void mt2060_calibrate(struct mt2060_state *state)
{
u8 b = 0;
int i = 0;
if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
return;
if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
return;
do {
b |= (1 << 6); // FM1SS;
mt2060_writereg(state, REG_LO2C1,b);
msleep(20);
if (i == 0) {
b |= (1 << 7); // FM1CA;
mt2060_writereg(state, REG_LO2C1,b);
b &= ~(1 << 7); // FM1CA;
msleep(20);
}
b &= ~(1 << 6); // FM1SS
mt2060_writereg(state, REG_LO2C1,b);
msleep(20);
i++;
} while (i < 9);
i = 0;
while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
msleep(20);
if (i < 10) {
mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
dprintk("calibration was successful: %d", state->fmfreq);
} else
dprintk("FMCAL timed out");
}
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
{
u8 id = 0;
memset(state,0,sizeof(struct mt2060_state));
state->config = config;
state->i2c = i2c;
state->if1_freq = if1;
if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
return -ENODEV;
if (id != PART_REV)
return -ENODEV;
printk(KERN_INFO "MT2060: successfully identified\n");
mt2060_calibrate(state);
return 0;
}
EXPORT_SYMBOL(mt2060_attach);
MODULE_AUTHOR("Olivier DANET");
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
MODULE_LICENSE("GPL");
|