1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
|
/*
Driver for Philips tda1004xh OFDM Frontend
(c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
This driver needs a copy of the DLL "ttlcdacc.dll" from the Haupauge or Technotrend
windows driver saved as '/usr/lib/hotplug/firmware/tda1004x.bin'.
You can also pass the complete file name with the module parameter 'tda1004x_firmware'.
Currently the DLL from v2.15a of the technotrend driver is supported. Other versions can
be added reasonably painlessly.
Windows driver URL: http://www.technotrend.de/
*/
#define __KERNEL_SYSCALLS__
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/unistd.h>
#include <linux/fcntl.h>
#include <linux/errno.h>
#include "dvb_frontend.h"
#include "dvb_functions.h"
#ifndef DVB_TDA1004X_FIRMWARE_FILE
#define DVB_TDA1004X_FIRMWARE_FILE "/usr/lib/hotplug/firmware/tda1004x.bin"
#endif
static int tda1004x_debug = 0;
static char *tda1004x_firmware = DVB_TDA1004X_FIRMWARE_FILE;
#define MC44BC374_ADDRESS 0x65
#define TDA1004X_CHIPID 0x00
#define TDA1004X_AUTO 0x01
#define TDA1004X_IN_CONF1 0x02
#define TDA1004X_IN_CONF2 0x03
#define TDA1004X_OUT_CONF1 0x04
#define TDA1004X_OUT_CONF2 0x05
#define TDA1004X_STATUS_CD 0x06
#define TDA1004X_CONFC4 0x07
#define TDA1004X_DSSPARE2 0x0C
#define TDA10045H_CODE_IN 0x0D
#define TDA10045H_FWPAGE 0x0E
#define TDA1004X_SCAN_CPT 0x10
#define TDA1004X_DSP_CMD 0x11
#define TDA1004X_DSP_ARG 0x12
#define TDA1004X_DSP_DATA1 0x13
#define TDA1004X_DSP_DATA2 0x14
#define TDA1004X_CONFADC1 0x15
#define TDA1004X_CONFC1 0x16
#define TDA10045H_S_AGC 0x1a
#define TDA10046H_AGC_TUN_LEVEL 0x1a
#define TDA1004X_SNR 0x1c
#define TDA1004X_CONF_TS1 0x1e
#define TDA1004X_CONF_TS2 0x1f
#define TDA1004X_CBER_RESET 0x20
#define TDA1004X_CBER_MSB 0x21
#define TDA1004X_CBER_LSB 0x22
#define TDA1004X_CVBER_LUT 0x23
#define TDA1004X_VBER_MSB 0x24
#define TDA1004X_VBER_MID 0x25
#define TDA1004X_VBER_LSB 0x26
#define TDA1004X_UNCOR 0x27
#define TDA10045H_CONFPLL_P 0x2D
#define TDA10045H_CONFPLL_M_MSB 0x2E
#define TDA10045H_CONFPLL_M_LSB 0x2F
#define TDA10045H_CONFPLL_N 0x30
#define TDA10046H_CONFPLL1 0x2D
#define TDA10046H_CONFPLL2 0x2F
#define TDA10046H_CONFPLL3 0x30
#define TDA10046H_TIME_WREF1 0x31
#define TDA10046H_TIME_WREF2 0x32
#define TDA10046H_TIME_WREF3 0x33
#define TDA10046H_TIME_WREF4 0x34
#define TDA10046H_TIME_WREF5 0x35
#define TDA10045H_UNSURW_MSB 0x31
#define TDA10045H_UNSURW_LSB 0x32
#define TDA10045H_WREF_MSB 0x33
#define TDA10045H_WREF_MID 0x34
#define TDA10045H_WREF_LSB 0x35
#define TDA10045H_MUXOUT 0x36
#define TDA1004X_CONFADC2 0x37
#define TDA10045H_IOFFSET 0x38
#define TDA10046H_CONF_TRISTATE1 0x3B
#define TDA10046H_CONF_TRISTATE2 0x3C
#define TDA10046H_CONF_POLARITY 0x3D
#define TDA10046H_FREQ_OFFSET 0x3E
#define TDA10046H_GPIO_OUT_SEL 0x41
#define TDA10046H_GPIO_SELECT 0x42
#define TDA10046H_AGC_CONF 0x43
#define TDA10046H_AGC_GAINS 0x46
#define TDA10046H_AGC_TUN_MIN 0x47
#define TDA10046H_AGC_TUN_MAX 0x48
#define TDA10046H_AGC_IF_MIN 0x49
#define TDA10046H_AGC_IF_MAX 0x4A
#define TDA10046H_FREQ_PHY2_MSB 0x4D
#define TDA10046H_FREQ_PHY2_LSB 0x4E
#define TDA10046H_CVBER_CTRL 0x4F
#define TDA10046H_AGC_IF_LEVEL 0x52
#define TDA10046H_CODE_CPT 0x57
#define TDA10046H_CODE_IN 0x58
#define FE_TYPE_TDA10045H 0
#define FE_TYPE_TDA10046H 1
#define TUNER_TYPE_TD1344 0
#define TUNER_TYPE_TD1316 1
#define dprintk if (tda1004x_debug) printk
static struct dvb_frontend_info tda10045h_info = {
.name = "Philips TDA10045H",
.type = FE_OFDM,
.frequency_min = 51000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
};
static struct dvb_frontend_info tda10046h_info = {
.name = "Philips TDA10046H",
.type = FE_OFDM,
.frequency_min = 51000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
};
#pragma pack(1)
struct tda1004x_state {
u8 tda1004x_address;
u8 tuner_address;
u8 initialised:1;
u8 tuner_type:2;
u8 fe_type:2;
};
#pragma pack()
struct fwinfo {
int file_size;
int fw_offset;
int fw_size;
};
static struct fwinfo tda10045h_fwinfo[] = { {.file_size = 286720,.fw_offset = 0x34cc5,.fw_size = 30555} };
static int tda10045h_fwinfo_count = sizeof(tda10045h_fwinfo) / sizeof(struct fwinfo);
static struct fwinfo tda10046h_fwinfo[] = { {.file_size = 286720,.fw_offset = 0x3c4f9,.fw_size = 24479} };
static int tda10046h_fwinfo_count = sizeof(tda10046h_fwinfo) / sizeof(struct fwinfo);
static int errno;
static int tda1004x_write_byte(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state, int reg, int data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr=0, .flags=0, .buf=buf, .len=2 };
dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
msg.addr = tda_state->tda1004x_address;
ret = i2c->xfer(i2c, &msg, 1);
if (ret != 1)
dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
__FUNCTION__, reg, data, ret);
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int tda1004x_read_byte(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state, int reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {{ .addr=0, .flags=0, .buf=b0, .len=1},
{ .addr=0, .flags=I2C_M_RD, .buf=b1, .len = 1}};
dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
msg[0].addr = tda_state->tda1004x_address;
msg[1].addr = tda_state->tda1004x_address;
ret = i2c->xfer(i2c, msg, 2);
if (ret != 2) {
dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
ret);
return -1;
}
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, b1[0], ret);
return b1[0];
}
static int tda1004x_write_mask(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state, int reg, int mask, int data)
{
int val;
dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
mask, data);
// read a byte and check
val = tda1004x_read_byte(i2c, tda_state, reg);
if (val < 0)
return val;
// mask if off
val = val & ~mask;
val |= data & 0xff;
// write it out again
return tda1004x_write_byte(i2c, tda_state, reg, val);
}
static int tda1004x_write_buf(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state, int reg, unsigned char *buf, int len)
{
int i;
int result;
dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
result = 0;
for (i = 0; i < len; i++) {
result = tda1004x_write_byte(i2c, tda_state, reg + i, buf[i]);
if (result != 0)
break;
}
return result;
}
static int tda1004x_enable_tuner_i2c(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
int result;
dprintk("%s\n", __FUNCTION__);
result = tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 2, 2);
dvb_delay(1);
return result;
}
static int tda1004x_disable_tuner_i2c(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
dprintk("%s\n", __FUNCTION__);
return tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 2, 0);
}
static int tda10045h_set_bandwidth(struct dvb_i2c_bus *i2c,
struct tda1004x_state *tda_state,
fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x14);
tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
break;
case BANDWIDTH_7_MHZ:
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x80);
tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
break;
case BANDWIDTH_8_MHZ:
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0x14);
tda1004x_write_buf(i2c, tda_state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
break;
default:
return -EINVAL;
}
tda1004x_write_byte(i2c, tda_state, TDA10045H_IOFFSET, 0);
// done
return 0;
}
static int tda10046h_set_bandwidth(struct dvb_i2c_bus *i2c,
struct tda1004x_state *tda_state,
fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x80, 0x15, 0xfe, 0xab, 0x8e };
static u8 bandwidth_7mhz[] = { 0x6e, 0x02, 0x53, 0xc8, 0x25 };
static u8 bandwidth_8mhz[] = { 0x60, 0x12, 0xa8, 0xe4, 0xbd };
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_6mhz, sizeof(bandwidth_6mhz));
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0);
break;
case BANDWIDTH_7_MHZ:
tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_7mhz, sizeof(bandwidth_7mhz));
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0);
break;
case BANDWIDTH_8_MHZ:
tda1004x_write_buf(i2c, tda_state, TDA10046H_TIME_WREF1, bandwidth_8mhz, sizeof(bandwidth_8mhz));
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSSPARE2, 0xFF);
break;
default:
return -EINVAL;
}
// done
return 0;
}
static int tda1004x_fwupload(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
u8 fw_buf[65];
struct i2c_msg fw_msg = {.addr = 0,.flags = 0,.buf = fw_buf,.len = 0 };
unsigned char *firmware = NULL;
int filesize;
int fd;
int fwinfo_idx;
int fw_size = 0;
int fw_pos, fw_offset;
int tx_size;
mm_segment_t fs = get_fs();
int dspCodeCounterReg=0, dspCodeInReg=0, dspVersion=0;
int fwInfoCount=0;
struct fwinfo* fwInfo = NULL;
unsigned long timeout;
// DSP parameters
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
dspCodeCounterReg = TDA10045H_FWPAGE;
dspCodeInReg = TDA10045H_CODE_IN;
dspVersion = 0x2c;
fwInfoCount = tda10045h_fwinfo_count;
fwInfo = tda10045h_fwinfo;
break;
case FE_TYPE_TDA10046H:
dspCodeCounterReg = TDA10046H_CODE_CPT;
dspCodeInReg = TDA10046H_CODE_IN;
dspVersion = 0x20;
fwInfoCount = tda10046h_fwinfo_count;
fwInfo = tda10046h_fwinfo;
break;
}
// Load the firmware
set_fs(get_ds());
fd = open(tda1004x_firmware, 0, 0);
if (fd < 0) {
printk("%s: Unable to open firmware %s\n", __FUNCTION__,
tda1004x_firmware);
return -EIO;
}
filesize = lseek(fd, 0L, 2);
if (filesize <= 0) {
printk("%s: Firmware %s is empty\n", __FUNCTION__,
tda1004x_firmware);
sys_close(fd);
return -EIO;
}
// find extraction parameters for firmware
for (fwinfo_idx = 0; fwinfo_idx < fwInfoCount; fwinfo_idx++) {
if (fwInfo[fwinfo_idx].file_size == filesize)
break;
}
if (fwinfo_idx >= fwInfoCount) {
printk("%s: Unsupported firmware %s\n", __FUNCTION__, tda1004x_firmware);
sys_close(fd);
return -EIO;
}
fw_size = fwInfo[fwinfo_idx].fw_size;
fw_offset = fwInfo[fwinfo_idx].fw_offset;
// allocate buffer for it
firmware = vmalloc(fw_size);
if (firmware == NULL) {
printk("%s: Out of memory loading firmware\n",
__FUNCTION__);
sys_close(fd);
return -EIO;
}
// read it!
lseek(fd, fw_offset, 0);
if (read(fd, firmware, fw_size) != fw_size) {
printk("%s: Failed to read firmware\n", __FUNCTION__);
vfree(firmware);
sys_close(fd);
return -EIO;
}
sys_close(fd);
set_fs(fs);
// set some valid bandwith parameters before uploading
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
// reset chip
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 0);
dvb_delay(10);
// set parameters
tda10045h_set_bandwidth(i2c, tda_state, BANDWIDTH_8_MHZ);
break;
case FE_TYPE_TDA10046H:
// reset chip
tda1004x_write_mask(i2c, tda_state, TDA10046H_CONF_TRISTATE1, 1, 0);
dvb_delay(10);
// set parameters
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL2, 10);
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL3, 0);
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_OFFSET, 99);
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_MSB, 0xd4);
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_LSB, 0x2c);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
break;
}
// do the firmware upload
tda1004x_write_byte(i2c, tda_state, dspCodeCounterReg, 0); // clear code counter
fw_msg.addr = tda_state->tda1004x_address;
fw_pos = 0;
while (fw_pos != fw_size) {
// work out how much to send this time
tx_size = fw_size - fw_pos;
if (tx_size > 0x10) {
tx_size = 0x10;
}
// send the chunk
fw_buf[0] = dspCodeInReg;
memcpy(fw_buf + 1, firmware + fw_pos, tx_size);
fw_msg.len = tx_size + 1;
if (i2c->xfer(i2c, &fw_msg, 1) != 1) {
printk("tda1004x: Error during firmware upload\n");
vfree(firmware);
return -EIO;
}
fw_pos += tx_size;
dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, fw_pos);
}
vfree(firmware);
// wait for DSP to initialise
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
// DSPREADY doesn't seem to work on the TDA10045H
dvb_delay(100);
break;
case FE_TYPE_TDA10046H:
timeout = jiffies + HZ;
while(!(tda1004x_read_byte(i2c, tda_state, TDA1004X_STATUS_CD) & 0x20)) {
if (time_after(jiffies, timeout)) {
printk("tda1004x: DSP failed to initialised.\n");
return -EIO;
}
dvb_delay(1);
}
break;
}
// check upload was OK
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
tda1004x_write_byte(i2c, tda_state, TDA1004X_DSP_CMD, 0x67);
if ((tda1004x_read_byte(i2c, tda_state, TDA1004X_DSP_DATA1) != 0x67) ||
(tda1004x_read_byte(i2c, tda_state, TDA1004X_DSP_DATA2) != dspVersion)) {
printk("%s: firmware upload failed!\n", __FUNCTION__);
return -EIO;
}
// success
return 0;
}
static int tda10045h_init(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
struct i2c_msg tuner_msg = {.addr = 0,.flags = 0,.buf = 0,.len = 0 };
static u8 disable_mc44BC374c[] = { 0x1d, 0x74, 0xa0, 0x68 };
dprintk("%s\n", __FUNCTION__);
// Disable the MC44BC374C
tda1004x_enable_tuner_i2c(i2c, tda_state);
tuner_msg.addr = MC44BC374_ADDRESS;
tuner_msg.buf = disable_mc44BC374c;
tuner_msg.len = sizeof(disable_mc44BC374c);
if (i2c->xfer(i2c, &tuner_msg, 1) != 1) {
i2c->xfer(i2c, &tuner_msg, 1);
}
tda1004x_disable_tuner_i2c(i2c, tda_state);
// tda setup
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 8, 0); // select HP stream
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x40, 0); // no frequency inversion
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
tda1004x_write_mask(i2c, tda_state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
tda1004x_write_byte(i2c, tda_state, TDA1004X_CONFADC1, 0x2e);
// done
return 0;
}
static int tda10046h_init(struct dvb_i2c_bus *i2c, struct tda1004x_state *tda_state)
{
struct i2c_msg tuner_msg = {.addr = 0,.flags = 0,.buf = 0,.len = 0 };
static u8 disable_mc44BC374c[] = { 0x1d, 0x74, 0xa0, 0x68 };
dprintk("%s\n", __FUNCTION__);
// Disable the MC44BC374C
tda1004x_enable_tuner_i2c(i2c, tda_state);
tuner_msg.addr = MC44BC374_ADDRESS;
tuner_msg.buf = disable_mc44BC374c;
tuner_msg.len = sizeof(disable_mc44BC374c);
if (i2c->xfer(i2c, &tuner_msg, 1) != 1) {
i2c->xfer(i2c, &tuner_msg, 1);
}
tda1004x_disable_tuner_i2c(i2c, tda_state);
// tda setup
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x40, 0x40); // TT TDA10046H needs inversion ON
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 8, 0); // select HP stream
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x80, 0); // disable pulse killer
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL2, 10); // PLL M = 10
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_OFFSET, 99); // FREQOFFS = 99
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_MSB, 0xd4); // } PHY2 = -11221
tda1004x_write_byte(i2c, tda_state, TDA10046H_FREQ_PHY2_LSB, 0x2c); // }
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_CONF, 0); // AGC setup
tda1004x_write_mask(i2c, tda_state, TDA10046H_CONF_POLARITY, 0x60, 0x60); // set AGC polarities
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_TUN_MIN, 0); // }
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_IF_MIN, 0); // }
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_IF_MAX, 0xff); // }
tda1004x_write_mask(i2c, tda_state, TDA10046H_CVBER_CTRL, 0x30, 0x10); // 10^6 VBER measurement bits
tda1004x_write_byte(i2c, tda_state, TDA10046H_AGC_GAINS, 1); // IF gain 2, TUN gain 1
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x80, 0); // crystal is 50ppm
tda1004x_write_byte(i2c, tda_state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONF_TS2, 0x31, 0); // MPEG2 interface config
tda1004x_write_mask(i2c, tda_state, TDA10046H_CONF_TRISTATE1, 0x9e, 0); // disable AGC_TUN
tda1004x_write_byte(i2c, tda_state, TDA10046H_CONF_TRISTATE2, 0xe1); // tristate setup
tda1004x_write_byte(i2c, tda_state, TDA10046H_GPIO_OUT_SEL, 0xcc); // GPIO output config
tda1004x_write_mask(i2c, tda_state, TDA10046H_GPIO_SELECT, 8, 8); // GPIO select
tda10046h_set_bandwidth(i2c, tda_state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
// done
return 0;
}
static int tda1004x_encode_fec(int fec)
{
// convert known FEC values
switch (fec) {
case FEC_1_2:
return 0;
case FEC_2_3:
return 1;
case FEC_3_4:
return 2;
case FEC_5_6:
return 3;
case FEC_7_8:
return 4;
}
// unsupported
return -EINVAL;
}
static int tda1004x_decode_fec(int tdafec)
{
// convert known FEC values
switch (tdafec) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_7_8;
}
// unsupported
return -1;
}
static int tda1004x_set_frequency(struct dvb_i2c_bus *i2c,
struct tda1004x_state *tda_state,
struct dvb_frontend_parameters *fe_params)
{
u8 tuner_buf[4];
struct i2c_msg tuner_msg = {.addr=0, .flags=0, .buf=tuner_buf, .len=sizeof(tuner_buf) };
int tuner_frequency = 0;
u8 band, cp, filter;
int counter, counter2;
dprintk("%s\n", __FUNCTION__);
// setup the frequency buffer
switch (tda_state->tuner_type) {
case TUNER_TYPE_TD1344:
// setup tuner buffer
// ((Fif+((1000000/6)/2)) + Finput)/(1000000/6)
tuner_frequency =
(((fe_params->frequency / 1000) * 6) + 217502) / 1000;
tuner_buf[0] = tuner_frequency >> 8;
tuner_buf[1] = tuner_frequency & 0xff;
tuner_buf[2] = 0x88;
if (fe_params->frequency < 550000000) {
tuner_buf[3] = 0xab;
} else {
tuner_buf[3] = 0xeb;
}
// tune it
tda1004x_enable_tuner_i2c(i2c, tda_state);
tuner_msg.addr = tda_state->tuner_address;
tuner_msg.len = 4;
i2c->xfer(i2c, &tuner_msg, 1);
// wait for it to finish
tuner_msg.len = 1;
tuner_msg.flags = I2C_M_RD;
counter = 0;
counter2 = 0;
while (counter++ < 100) {
if (i2c->xfer(i2c, &tuner_msg, 1) == 1) {
if (tuner_buf[0] & 0x40) {
counter2++;
} else {
counter2 = 0;
}
}
if (counter2 > 10) {
break;
}
}
tda1004x_disable_tuner_i2c(i2c, tda_state);
break;
case TUNER_TYPE_TD1316:
// determine charge pump
tuner_frequency = fe_params->frequency + 36130000;
if (tuner_frequency < 87000000) {
return -EINVAL;
} else if (tuner_frequency < 130000000) {
cp = 3;
} else if (tuner_frequency < 160000000) {
cp = 5;
} else if (tuner_frequency < 200000000) {
cp = 6;
} else if (tuner_frequency < 290000000) {
cp = 3;
} else if (tuner_frequency < 420000000) {
cp = 5;
} else if (tuner_frequency < 480000000) {
cp = 6;
} else if (tuner_frequency < 620000000) {
cp = 3;
} else if (tuner_frequency < 830000000) {
cp = 5;
} else if (tuner_frequency < 895000000) {
cp = 7;
} else {
return -EINVAL;
}
// determine band
if (fe_params->frequency < 49000000) {
return -EINVAL;
} else if (fe_params->frequency < 159000000) {
band = 1;
} else if (fe_params->frequency < 444000000) {
band = 2;
} else if (fe_params->frequency < 861000000) {
band = 4;
} else {
return -EINVAL;
}
// work out filter
switch (fe_params->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
filter = 0;
break;
case BANDWIDTH_7_MHZ:
filter = 0;
break;
case BANDWIDTH_8_MHZ:
filter = 1;
break;
default:
return -EINVAL;
}
// calculate divisor
// ((36130000+((1000000/6)/2)) + Finput)/(1000000/6)
tuner_frequency =
(((fe_params->frequency / 1000) * 6) + 217280) / 1000;
// setup tuner buffer
tuner_buf[0] = tuner_frequency >> 8;
tuner_buf[1] = tuner_frequency & 0xff;
tuner_buf[2] = 0xca;
tuner_buf[3] = (cp << 5) | (filter << 3) | band;
// tune it
if (tda_state->fe_type == FE_TYPE_TDA10046H) {
// setup auto offset
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x10, 0x10);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x80, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0xC0, 0);
// disable agc_conf[2]
tda1004x_write_mask(i2c, tda_state, TDA10046H_AGC_CONF, 4, 0);
}
tda1004x_enable_tuner_i2c(i2c, tda_state);
tuner_msg.addr = tda_state->tuner_address;
tuner_msg.len = 4;
if (i2c->xfer(i2c, &tuner_msg, 1) != 1) {
return -EIO;
}
dvb_delay(1);
tda1004x_disable_tuner_i2c(i2c, tda_state);
if (tda_state->fe_type == FE_TYPE_TDA10046H)
tda1004x_write_mask(i2c, tda_state, TDA10046H_AGC_CONF, 4, 4);
break;
default:
return -EINVAL;
}
dprintk("%s: success\n", __FUNCTION__);
// done
return 0;
}
static int tda1004x_set_fe(struct dvb_i2c_bus *i2c,
struct tda1004x_state *tda_state,
struct dvb_frontend_parameters *fe_params)
{
int tmp;
int inversion;
dprintk("%s\n", __FUNCTION__);
// set frequency
if ((tmp = tda1004x_set_frequency(i2c, tda_state, fe_params)) < 0)
return tmp;
// hardcoded to use auto as much as possible
fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
// Set standard params.. or put them to auto
if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
(fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
(fe_params->u.ofdm.constellation == QAM_AUTO) ||
(fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 1, 1); // enable auto
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
} else {
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 1, 0); // disable auto
// set HP FEC
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
if (tmp < 0) return tmp;
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 7, tmp);
// set LP FEC
if (fe_params->u.ofdm.code_rate_LP != FEC_NONE) {
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
if (tmp < 0) return tmp;
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
}
// set constellation
switch (fe_params->u.ofdm.constellation) {
case QPSK:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 0);
break;
case QAM_16:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 1);
break;
case QAM_64:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 3, 2);
break;
default:
return -EINVAL;
}
// set hierarchy
switch (fe_params->u.ofdm.hierarchy_information) {
case HIERARCHY_NONE:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
break;
case HIERARCHY_1:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
break;
case HIERARCHY_2:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
break;
case HIERARCHY_4:
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
break;
default:
return -EINVAL;
}
}
// set bandwidth
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
tda10045h_set_bandwidth(i2c, tda_state, fe_params->u.ofdm.bandwidth);
break;
case FE_TYPE_TDA10046H:
tda10046h_set_bandwidth(i2c, tda_state, fe_params->u.ofdm.bandwidth);
break;
}
// need to invert the inversion for TT TDA10046H
inversion = fe_params->inversion;
if (tda_state->fe_type == FE_TYPE_TDA10046H) {
inversion = inversion ? INVERSION_OFF : INVERSION_ON;
}
// set inversion
switch (inversion) {
case INVERSION_OFF:
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x20, 0);
break;
case INVERSION_ON:
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC1, 0x20, 0x20);
break;
default:
return -EINVAL;
}
// set guard interval
switch (fe_params->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
case GUARD_INTERVAL_1_16:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
break;
case GUARD_INTERVAL_1_8:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
break;
case GUARD_INTERVAL_1_4:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
break;
case GUARD_INTERVAL_AUTO:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 2, 2);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
default:
return -EINVAL;
}
// set transmission mode
switch (fe_params->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
break;
case TRANSMISSION_MODE_8K:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
break;
case TRANSMISSION_MODE_AUTO:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 4, 4);
tda1004x_write_mask(i2c, tda_state, TDA1004X_IN_CONF1, 0x10, 0);
break;
default:
return -EINVAL;
}
// start the lock
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(i2c, tda_state, TDA1004X_CONFC4, 8, 0);
dvb_delay(10);
break;
case FE_TYPE_TDA10046H:
tda1004x_write_mask(i2c, tda_state, TDA1004X_AUTO, 0x40, 0x40);
dvb_delay(10);
break;
}
// done
return 0;
}
static int tda1004x_get_fe(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, struct dvb_frontend_parameters *fe_params)
{
dprintk("%s\n", __FUNCTION__);
// inversion status
fe_params->inversion = INVERSION_OFF;
if (tda1004x_read_byte(i2c, tda_state, TDA1004X_CONFC1) & 0x20) {
fe_params->inversion = INVERSION_ON;
}
// need to invert the inversion for TT TDA10046H
if (tda_state->fe_type == FE_TYPE_TDA10046H) {
fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
}
// bandwidth
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
switch (tda1004x_read_byte(i2c, tda_state, TDA10045H_WREF_LSB)) {
case 0x14:
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0xdb:
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x4f:
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
break;
case FE_TYPE_TDA10046H:
switch (tda1004x_read_byte(i2c, tda_state, TDA10046H_TIME_WREF1)) {
case 0x60:
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0x6e:
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x80:
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
break;
}
// FEC
fe_params->u.ofdm.code_rate_HP =
tda1004x_decode_fec(tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF2) & 7);
fe_params->u.ofdm.code_rate_LP =
tda1004x_decode_fec((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF2) >> 3) & 7);
// constellation
switch (tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 3) {
case 0:
fe_params->u.ofdm.constellation = QPSK;
break;
case 1:
fe_params->u.ofdm.constellation = QAM_16;
break;
case 2:
fe_params->u.ofdm.constellation = QAM_64;
break;
}
// transmission mode
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
if (tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x10) {
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
}
// guard interval
switch ((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
case 0:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
break;
}
// hierarchy
switch ((tda1004x_read_byte(i2c, tda_state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
case 0:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
break;
case 1:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
break;
case 2:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
break;
case 3:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
break;
}
// done
return 0;
}
static int tda1004x_read_status(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, fe_status_t * fe_status)
{
int status;
int cber;
int vber;
dprintk("%s\n", __FUNCTION__);
// read status
status = tda1004x_read_byte(i2c, tda_state, TDA1004X_STATUS_CD);
if (status == -1) {
return -EIO;
}
// decode
*fe_status = 0;
if (status & 4) *fe_status |= FE_HAS_SIGNAL;
if (status & 2) *fe_status |= FE_HAS_CARRIER;
if (status & 8) *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
// if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
// is getting anything valid
if (!(*fe_status & FE_HAS_VITERBI)) {
// read the CBER
cber = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_LSB);
if (cber == -1) return -EIO;
status = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_MSB);
if (status == -1) return -EIO;
cber |= (status << 8);
tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_RESET);
if (cber != 65535) {
*fe_status |= FE_HAS_VITERBI;
}
}
// if we DO have some valid VITERBI output, but don't already have SYNC
// bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
// read the VBER
vber = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_LSB);
if (vber == -1) return -EIO;
status = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_MID);
if (status == -1) return -EIO;
vber |= (status << 8);
status = tda1004x_read_byte(i2c, tda_state, TDA1004X_VBER_MSB);
if (status == -1) return -EIO;
vber |= ((status << 16) & 0x0f);
tda1004x_read_byte(i2c, tda_state, TDA1004X_CVBER_LUT);
// if RS has passed some valid TS packets, then we must be
// getting some SYNC bytes
if (vber < 16632) {
*fe_status |= FE_HAS_SYNC;
}
}
// success
dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
return 0;
}
static int tda1004x_read_signal_strength(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, u16 * signal)
{
int tmp;
int reg = 0;
dprintk("%s\n", __FUNCTION__);
// determine the register to use
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
reg = TDA10045H_S_AGC;
break;
case FE_TYPE_TDA10046H:
reg = TDA10046H_AGC_IF_LEVEL;
break;
}
// read it
tmp = tda1004x_read_byte(i2c, tda_state, reg);
if (tmp < 0)
return -EIO;
// done
*signal = (tmp << 8) | tmp;
dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
return 0;
}
static int tda1004x_read_snr(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, u16 * snr)
{
int tmp;
dprintk("%s\n", __FUNCTION__);
// read it
tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_SNR);
if (tmp < 0)
return -EIO;
if (tmp) {
tmp = 255 - tmp;
}
// done
*snr = ((tmp << 8) | tmp);
dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
return 0;
}
static int tda1004x_read_ucblocks(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, u32* ucblocks)
{
int tmp;
int tmp2;
int counter;
dprintk("%s\n", __FUNCTION__);
// read the UCBLOCKS and reset
counter = 0;
tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_UNCOR);
if (tmp < 0)
return -EIO;
tmp &= 0x7f;
while (counter++ < 5) {
tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(i2c, tda_state, TDA1004X_UNCOR, 0x80, 0);
tmp2 = tda1004x_read_byte(i2c, tda_state, TDA1004X_UNCOR);
if (tmp2 < 0)
return -EIO;
tmp2 &= 0x7f;
if ((tmp2 < tmp) || (tmp2 == 0))
break;
}
// done
if (tmp != 0x7f) {
*ucblocks = tmp;
} else {
*ucblocks = 0xffffffff;
}
dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
return 0;
}
static int tda1004x_read_ber(struct dvb_i2c_bus *i2c, struct tda1004x_state* tda_state, u32* ber)
{
int tmp;
dprintk("%s\n", __FUNCTION__);
// read it in
tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_LSB);
if (tmp < 0) return -EIO;
*ber = tmp << 1;
tmp = tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_MSB);
if (tmp < 0) return -EIO;
*ber |= (tmp << 9);
tda1004x_read_byte(i2c, tda_state, TDA1004X_CBER_RESET);
// done
dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
return 0;
}
static int tda1004x_ioctl(struct dvb_frontend *fe, unsigned int cmd, void *arg)
{
int status = 0;
struct dvb_i2c_bus *i2c = fe->i2c;
struct tda1004x_state *tda_state = (struct tda1004x_state *) &(fe->data);
dprintk("%s: cmd=0x%x\n", __FUNCTION__, cmd);
switch (cmd) {
case FE_GET_INFO:
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
memcpy(arg, &tda10045h_info, sizeof(struct dvb_frontend_info));
break;
case FE_TYPE_TDA10046H:
memcpy(arg, &tda10046h_info, sizeof(struct dvb_frontend_info));
break;
}
break;
case FE_READ_STATUS:
return tda1004x_read_status(i2c, tda_state, (fe_status_t *) arg);
case FE_READ_BER:
return tda1004x_read_ber(i2c, tda_state, (u32 *) arg);
case FE_READ_SIGNAL_STRENGTH:
return tda1004x_read_signal_strength(i2c, tda_state, (u16 *) arg);
case FE_READ_SNR:
return tda1004x_read_snr(i2c, tda_state, (u16 *) arg);
case FE_READ_UNCORRECTED_BLOCKS:
return tda1004x_read_ucblocks(i2c, tda_state, (u32 *) arg);
case FE_SET_FRONTEND:
return tda1004x_set_fe(i2c, tda_state, (struct dvb_frontend_parameters*) arg);
case FE_GET_FRONTEND:
return tda1004x_get_fe(i2c, tda_state, (struct dvb_frontend_parameters*) arg);
case FE_INIT:
// don't bother reinitialising
if (tda_state->initialised)
return 0;
// OK, perform initialisation
switch(tda_state->fe_type) {
case FE_TYPE_TDA10045H:
status = tda10045h_init(i2c, tda_state);
break;
case FE_TYPE_TDA10046H:
status = tda10046h_init(i2c, tda_state);
break;
}
if (status == 0)
tda_state->initialised = 1;
return status;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int tda1004x_attach(struct dvb_i2c_bus *i2c, void **data)
{
int tda1004x_address = -1;
int tuner_address = -1;
int fe_type = -1;
int tuner_type = -1;
struct tda1004x_state tda_state;
struct i2c_msg tuner_msg = {.addr=0, .flags=0, .buf=0, .len=0 };
static u8 td1344_init[] = { 0x0b, 0xf5, 0x88, 0xab };
static u8 td1316_init[] = { 0x0b, 0xf5, 0x85, 0xab };
static u8 td1316_init_tda10046h[] = { 0x0b, 0xf5, 0x80, 0xab };
int status;
dprintk("%s\n", __FUNCTION__);
// probe for tda10045h
if (tda1004x_address == -1) {
tda_state.tda1004x_address = 0x08;
if (tda1004x_read_byte(i2c, &tda_state, TDA1004X_CHIPID) == 0x25) {
tda1004x_address = 0x08;
fe_type = FE_TYPE_TDA10045H;
printk("tda1004x: Detected Philips TDA10045H.\n");
}
}
// probe for tda10046h
if (tda1004x_address == -1) {
tda_state.tda1004x_address = 0x08;
if (tda1004x_read_byte(i2c, &tda_state, TDA1004X_CHIPID) == 0x46) {
tda1004x_address = 0x08;
fe_type = FE_TYPE_TDA10046H;
printk("tda1004x: Detected Philips TDA10046H.\n");
}
}
// did we find a frontend?
if (tda1004x_address == -1) {
return -ENODEV;
}
// enable access to the tuner
tda1004x_enable_tuner_i2c(i2c, &tda_state);
// check for a TD1344 first
if (tuner_address == -1) {
tuner_msg.addr = 0x61;
tuner_msg.buf = td1344_init;
tuner_msg.len = sizeof(td1344_init);
if (i2c->xfer(i2c, &tuner_msg, 1) == 1) {
dvb_delay(1);
tuner_address = 0x61;
tuner_type = TUNER_TYPE_TD1344;
printk("tda1004x: Detected Philips TD1344 tuner.\n");
}
}
// OK, try a TD1316 on address 0x63
if (tuner_address == -1) {
tuner_msg.addr = 0x63;
tuner_msg.buf = td1316_init;
tuner_msg.len = sizeof(td1316_init);
if (i2c->xfer(i2c, &tuner_msg, 1) == 1) {
dvb_delay(1);
tuner_address = 0x63;
tuner_type = TUNER_TYPE_TD1316;
printk("tda1004x: Detected Philips TD1316 tuner.\n");
}
}
// OK, TD1316 again, on address 0x60 (TDA10046H)
if (tuner_address == -1) {
tuner_msg.addr = 0x60;
tuner_msg.buf = td1316_init_tda10046h;
tuner_msg.len = sizeof(td1316_init_tda10046h);
if (i2c->xfer(i2c, &tuner_msg, 1) == 1) {
dvb_delay(1);
tuner_address = 0x60;
tuner_type = TUNER_TYPE_TD1316;
printk("tda1004x: Detected Philips TD1316 tuner.\n");
}
}
tda1004x_disable_tuner_i2c(i2c, &tda_state);
// did we find a tuner?
if (tuner_address == -1) {
printk("tda1004x: Detected, but with unknown tuner.\n");
return -ENODEV;
}
// create state
tda_state.tda1004x_address = tda1004x_address;
tda_state.fe_type = fe_type;
tda_state.tuner_address = tuner_address;
tda_state.tuner_type = tuner_type;
tda_state.initialised = 0;
// upload firmware
if ((status = tda1004x_fwupload(i2c, &tda_state)) != 0) return status;
// register
switch(tda_state.fe_type) {
case FE_TYPE_TDA10045H:
return dvb_register_frontend(tda1004x_ioctl, i2c, (void *)(*((u32*) &tda_state)), &tda10045h_info);
case FE_TYPE_TDA10046H:
return dvb_register_frontend(tda1004x_ioctl, i2c, (void *)(*((u32*) &tda_state)), &tda10046h_info);
}
// should not get here
return -EINVAL;
}
static
void tda1004x_detach(struct dvb_i2c_bus *i2c, void *data)
{
dprintk("%s\n", __FUNCTION__);
dvb_unregister_frontend(tda1004x_ioctl, i2c);
}
static
int __init init_tda1004x(void)
{
return dvb_register_i2c_device(THIS_MODULE, tda1004x_attach, tda1004x_detach);
}
static
void __exit exit_tda1004x(void)
{
dvb_unregister_i2c_device(tda1004x_attach);
}
module_init(init_tda1004x);
module_exit(exit_tda1004x);
MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Frontend");
MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
MODULE_LICENSE("GPL");
MODULE_PARM(tda1004x_debug, "i");
MODULE_PARM_DESC(tda1004x_debug, "enable verbose debug messages");
MODULE_PARM(tda1004x_firmware, "s");
MODULE_PARM_DESC(tda1004x_firmware, "Where to find the firmware file");
|