1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
|
/*
Driver for Philips tda10046H OFDM Frontend with LG INNOTEK TdtpE001P Tuner,
based on Philips tda1004xh OFDM Frontend driver written by Andrew de Quincey
& Robert Schlabbach
Written by Dany Salman -- salmandany@yahoo.fr
Copyright (c) 2004 TDF
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
//====================================================================
// Standard Include files
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/unistd.h>
#include <linux/fcntl.h>
#include <linux/syscalls.h>
#include <linux/i2c.h>
//====================================================================
// DVB Include files
#include "dvb_frontend.h"
#include "tmbsl10046DSPcode.h"
#include "tda1004x.h"
#define TDA1004X_DEMOD_TDA10045 0
#define TDA1004X_DEMOD_TDA10046 1
//====================================================================
// Defines
#define TDA1004X_CHIPID 0x00
#define TDA1004X_AUTO 0x01
#define TDA1004X_IN_CONF1 0x02
#define TDA1004X_IN_CONF2 0x03
#define TDA1004X_OUT_CONF1 0x04
#define TDA1004X_OUT_CONF2 0x05
#define TDA1004X_STATUS_CD 0x06
#define TDA1004X_CONFC4 0x07
#define TDA1004X_DSSPARE2 0x0C
#define TDA1004X_SCAN_CPT 0x10
#define TDA1004X_DSP_CMD 0x11
#define TDA1004X_DSP_ARG 0x12
#define TDA1004X_DSP_DATA1 0x13
#define TDA1004X_DSP_DATA2 0x14
#define TDA1004X_CONFADC1 0x15
#define TDA1004X_CONFC1 0x16
#define TDA10046H_AGC_TUN_LEVEL 0x1a
#define TDA1004X_SNR 0x1c
#define TDA1004X_CONF_TS1 0x1e
#define TDA1004X_CONF_TS2 0x1f
#define TDA1004X_CBER_RESET 0x20
#define TDA1004X_CBER_MSB 0x21
#define TDA1004X_CBER_LSB 0x22
#define TDA1004X_CVBER_LUT 0x23
#define TDA1004X_VBER_MSB 0x24
#define TDA1004X_VBER_MID 0x25
#define TDA1004X_VBER_LSB 0x26
#define TDA1004X_UNCOR 0x27
#define TDA1004X_IT_SEL 0x29
#define TDA10046H_CONFPLL1 0x2D
#define TDA10046H_CONFPLL2 0x2F
#define TDA10046H_CONFPLL3 0x30
#define TDA10046H_TIME_WREF1 0x31
#define TDA10046H_TIME_WREF2 0x32
#define TDA10046H_TIME_WREF3 0x33
#define TDA10046H_TIME_WREF4 0x34
#define TDA10046H_TIME_WREF5 0x35
#define TDA1004X_CONFADC2 0x37
#define TDA10046H_CONF_TRISTATE1 0x3B
#define TDA10046H_CONF_TRISTATE2 0x3C
#define TDA10046H_CONF_POLARITY 0x3D
#define TDA10046H_FREQ_OFFSET 0x3E
#define TDA10046H_GPIO_SP_DS3 0x40
#define TDA10046H_GPIO_OUT_SEL 0x41
#define TDA10046H_GPIO_SELECT 0x42
#define TDA10046H_AGC_CONF 0x43
#define TDA10046H_AGC_GAINS 0x46
#define TDA10046H_AGC_TUN_MIN 0x47
#define TDA10046H_AGC_TUN_MAX 0x48
#define TDA10046H_AGC_IF_MIN 0x49
#define TDA10046H_AGC_IF_MAX 0x4A
#define TDA10046H_FREQ_PHY2_MSB 0x4D
#define TDA10046H_FREQ_PHY2_LSB 0x4E
#define TDA10046H_CVBER_CTRL 0x4F
#define TDA10046H_CHANNEL_INFO1 0x50
#define TDA10046H_AGC_IF_LEVEL 0x52
#define TDA10046H_CODE_CPT 0x57
#define TDA10046H_CODE_IN 0x58
#define TDA10046_MAX_UNITS 1
#define TDA10046_RF_MIN 170000
#define TDA10046_RF_MAX 887000000
#define TDA10046_CS_MIN 6000000
#define TDA10046_CS_MAX 8000000
#define DEMOD_I2C_ADDRESS 0x10 >> 1
#define TUNER_I2C_ADDRESS 0xC2 >> 1
#define EEPROM_I2C_ADDRESS 0xA0
//====================================================================
// Module parameters
MODULE_DESCRIPTION("Philips TDA10046H DVB-T Frontend");
MODULE_AUTHOR("Dany Salman <salmandany@yahoo.fr>");
MODULE_LICENSE("GPL");
#ifdef PCMCIA_DEBUG
INT_MODULE_PARM(pc_debug, PCMCIA_DEBUG);
#define DEBUG(n, args...) if (pc_debug>(n)) DEBUG(0,KERN_DEBUG args)
static char *version = "pluto_cs.c 1.10 2004/07/22 (Dany Salman)";
#else
#define DEBUG(n, args...)
#endif
struct tda1004x_state {
struct i2c_adapter* i2c;
struct dvb_frontend_ops ops;
const struct tda1004x_config* config;
struct dvb_frontend frontend;
u8 initialised:1;
u8 demod_type;
};
// Information about frontend capabilities and frequencies limit
// called by ioctl FE_GET_INFO
//====================================================================
// Functions
// Write the byte <data> to the register <reg> of the demodulator
static int tda10046_write_byte(struct i2c_adapter *i2c, int reg, int data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr=0, .flags=0, .buf=buf, .len=2 };
DEBUG(1,"%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
msg.addr = DEMOD_I2C_ADDRESS;
ret = i2c_transfer(i2c, &msg, 1);
if (ret != 1)
DEBUG(0,"%s: error reg=0x%x, data=0x%x, ret=%i\n",
__FUNCTION__, reg, data, ret);
DEBUG(1,"%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, data, ret);
return (ret != 1) ? -1 : 0;
}
// Read the byte contained in register <reg>
static int tda1004x_read_byte(struct i2c_adapter *i2c, int reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {{ .addr=0, .flags=0, .buf=b0, .len=1},
{ .addr=0, .flags=I2C_M_RD, .buf=b1, .len = 1}};
DEBUG(1,"%s: reg=0x%x\n", __FUNCTION__, reg);
msg[0].addr = DEMOD_I2C_ADDRESS;
msg[1].addr = DEMOD_I2C_ADDRESS;
ret = i2c_transfer(i2c, msg, 2);
if (ret != 2) {
DEBUG(0,"%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
ret);
return -1;
}
DEBUG(1,"%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, b1[0], ret);
return b1[0];
}
// Write byte data <data> masked by <mask> in register <reg>
static int tda1004x_write_mask(struct i2c_adapter *i2c, int reg, int mask, int data)
{
int val;
DEBUG(1,"%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
mask, data);
// read a byte and check
val = tda1004x_read_byte(i2c, reg);
if (val < 0)
return val;
// mask if off
val = val & ~mask;
val |= data & 0xff;
// write it out again
return tda10046_write_byte(i2c, reg, val);
}
// Write <len> bytes contained by <buf> in register <reg>
static int tda1004x_write_buf(struct i2c_adapter *i2c, int reg, unsigned char *buf, int len)
{
int i;
int result;
DEBUG(1,"%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
result = 0;
for (i = 0; i < len; i++) {
result = tda10046_write_byte(i2c, reg + i, buf[i]);
if (result != 0)
break;
}
return result;
}
// Set bandwitdh
static int tda10046h_set_bandwidth(struct i2c_adapter *i2c, fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x80, 0x15, 0xfe, 0xab, 0x8e };
static u8 bandwidth_7mhz[] = { 0x6e, 0x02, 0x53, 0xc8, 0x25 };
static u8 bandwidth_8mhz[] = { 0x60, 0x12, 0xa8, 0xe4, 0xbd };
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
tda1004x_write_buf(i2c, TDA10046H_TIME_WREF1, bandwidth_6mhz, sizeof(bandwidth_6mhz));
tda10046_write_byte(i2c, TDA1004X_DSSPARE2, 0);
break;
case BANDWIDTH_7_MHZ:
tda1004x_write_buf(i2c, TDA10046H_TIME_WREF1, bandwidth_7mhz, sizeof(bandwidth_7mhz));
tda10046_write_byte(i2c, TDA1004X_DSSPARE2, 0);
break;
case BANDWIDTH_8_MHZ:
tda1004x_write_buf(i2c, TDA10046H_TIME_WREF1, bandwidth_8mhz, sizeof(bandwidth_8mhz));
tda10046_write_byte(i2c, TDA1004X_DSSPARE2, 0xFF);
break;
default:
return -EINVAL;
}
// done
return 0;
}
// Upload the firmware
static int tda1004x_fwupload(struct i2c_adapter *i2c)
{
u8 dsp_data1, dsp_data2;
u32 totalsize = 0;
struct i2c_msg fw_msg ;
fw_msg.addr = DEMOD_I2C_ADDRESS;
fw_msg.flags = 0 ;
printk("Please wait while uploading firmware...\n");
// First calculate the size of code included in the firmware
totalsize += (u32)((DSPcode10046RAM[0] << 8) | DSPcode10046RAM[1]) * 2;
totalsize += 4;
totalsize += (u32)((DSPcode10046RAM[totalsize] << 8) | DSPcode10046RAM[totalsize + 1]) * 2;
totalsize += 4;
// Prepare the chip to accept a firmware uploading
tda1004x_write_mask(i2c, TDA10046H_CONF_TRISTATE1, 1, 0);
tda1004x_write_mask(i2c, TDA1004X_CONFC4, 8, 8);
tda10046_write_byte(i2c, TDA10046H_CODE_CPT, 0x00);
// Prepare the message
fw_msg.buf = vmalloc(totalsize + 1);
fw_msg.len = totalsize + 1;
fw_msg.buf[0] = TDA10046H_CODE_IN;
// Copy the content of array DSPcode10046RAM into message buffer
memcpy(fw_msg.buf + 1, DSPcode10046RAM, totalsize);
// Upload firmware into TDA10046H_CODE_IN
if (i2c_transfer(i2c, &fw_msg, 1) != 1)
{
printk("tda1004x: Error during firmware upload\n");
vfree (fw_msg.buf);
return -EIO;
}
vfree (fw_msg.buf);
// First test to check if firmware has correctly been uploaded
tda10046_write_byte(i2c, TDA1004X_DSP_CMD, 0x61);
dsp_data1 = tda1004x_read_byte(i2c, TDA1004X_DSP_DATA1);
dsp_data2 = tda1004x_read_byte(i2c, TDA1004X_DSP_DATA2);
if ((dsp_data1 != 0) || (dsp_data2 != 0))
return -EIO;
// Second test to check if firmware has correctly been uploaded
tda10046_write_byte(i2c, TDA1004X_DSP_CMD, 0x67);
dsp_data1 = tda1004x_read_byte(i2c, TDA1004X_DSP_DATA1);
dsp_data2 = tda1004x_read_byte(i2c, TDA1004X_DSP_DATA2);
if (dsp_data1 != 0x67)
return -EIO;
// So far, we consider all was fine
printk("Firmware uploaded successfully !\n");
return 0;
}
// Process the FEC
static int tda1004x_encode_fec(int fec)
{
// convert known FEC values
switch (fec) {
case FEC_1_2: return 0;
case FEC_2_3: return 1;
case FEC_3_4: return 2;
case FEC_5_6: return 3;
case FEC_7_8: return 4;
}
// unsupported
return -EINVAL;
}
static int tda1004x_decode_fec(int tdafec)
{
// convert known FEC values
switch (tdafec) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_7_8;
}
// unsupported
return -1;
}
// Setup new frequency into tuner
static int tda1004x_set_frequency(struct i2c_adapter *i2c, struct dvb_frontend_parameters *fe_params)
{
u8 tuner_buf[4];
struct i2c_msg tuner_msg = {.addr=0, .flags=0, .buf=tuner_buf, .len=sizeof(tuner_buf) };
u32 tuner_frequency = 0;
u8 tmp;
DEBUG(0,"%s\n", __FUNCTION__);
// setup auto offset
tda1004x_write_mask(i2c, TDA1004X_AUTO, 0x10, 0x10);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x80, 0);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF2, 0xC0, 0);
// disable agc_conf[2]
tda1004x_write_mask(i2c, TDA10046H_AGC_CONF, 4, 0);
//tda1004x_enable_tuner_i2c(i2c);
tda1004x_write_mask(i2c, TDA1004X_CONFC4, 2, 2);
// setup the frequency buffer
tuner_frequency = (((fe_params->frequency / 1000) * 6) + 217502) / 1000;
tuner_buf[0] = (tuner_frequency >> 8) & 0x7f;
tuner_buf[1] = tuner_frequency & 0xff;
if (fe_params->frequency < 611000000)
tuner_buf[2] = 0xb4;
else if (fe_params->frequency < 811000000)
tuner_buf[2] = 0xbc;
else
tuner_buf[2] = 0xf4;
if (fe_params->frequency < 470000000)
tuner_buf[3] = 0x02;
else if (fe_params->frequency < 823000000)
tuner_buf[3] = 0x04;
if (fe_params->u.ofdm.bandwidth == BANDWIDTH_8_MHZ)
tuner_buf[3] |= 0x08;
tuner_msg.addr = TUNER_I2C_ADDRESS;
tuner_msg.len = 4;
if ((tmp = i2c_transfer(i2c, &tuner_msg, 1)) != 1) {
printk("I2C Tuner error : tmp %d, addr 0x%02x, buf[0] 0x%02x, buf[1] 0x%02x, buf[2] 0x%02x, buf[3] 0x%02x\n",tmp,tuner_msg.addr,tuner_msg.buf[0],tuner_msg.buf[1],tuner_msg.buf[2],tuner_msg.buf[3]);
return -EIO;
}
msleep(5);
tda1004x_write_mask(i2c, TDA1004X_CONFC4, 2, 0);
tda1004x_write_mask(i2c, TDA10046H_AGC_CONF, 4, 4);
DEBUG(0,"%s: success\n", __FUNCTION__);
// done
return 0;
}
// Setup new frontend parameters (FE_SET_FRONTEND ioctl)
static int tda1004x_set_fe(struct dvb_frontend *fe, struct dvb_frontend_parameters *fe_params)
{
struct tda1004x_state *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->i2c;
int tmp;
int inversion;
DEBUG(0,"%s\n", __FUNCTION__);
// set frequency
if ((tmp = tda1004x_set_frequency(i2c, fe_params)) < 0)
return tmp;
// hardcoded to use auto as much as possible
fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
// Set standard params.. or put them to auto
if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
(fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
(fe_params->u.ofdm.constellation == QAM_AUTO) ||
(fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO))
{
tda1004x_write_mask(i2c, TDA1004X_AUTO, 1, 1); // enable auto
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
tda1004x_write_mask(i2c, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
}
else
{
tda1004x_write_mask(i2c, TDA1004X_AUTO, 1, 0); // disable auto
// set HP FEC
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
if (tmp < 0) return tmp;
tda1004x_write_mask(i2c, TDA1004X_IN_CONF2, 7, tmp);
// set LP FEC
if (fe_params->u.ofdm.code_rate_LP != FEC_NONE)
{
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
if (tmp < 0) return tmp;
tda1004x_write_mask(i2c, TDA1004X_IN_CONF2, 0x38, tmp << 3);
}
// set constellation
switch (fe_params->u.ofdm.constellation)
{
case QPSK: tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 3, 0);
break;
case QAM_16: tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 3, 1);
break;
case QAM_64: tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 3, 2);
break;
default: return -EINVAL;
}
// set hierarchy
switch (fe_params->u.ofdm.hierarchy_information)
{
case HIERARCHY_NONE: tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x60, 0 << 5);
break;
case HIERARCHY_1: tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x60, 1 << 5);
break;
case HIERARCHY_2: tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x60, 2 << 5);
break;
case HIERARCHY_4: tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x60, 3 << 5);
break;
default: return -EINVAL;
}
}
// set bandwidth
tda10046h_set_bandwidth(i2c, fe_params->u.ofdm.bandwidth);
// need to invert the inversion for TT TDA10046H
inversion = fe_params->inversion;
inversion = inversion ? INVERSION_OFF : INVERSION_ON;
// set inversion
switch (inversion)
{
case INVERSION_OFF: tda1004x_write_mask(i2c, TDA1004X_CONFC1, 0x20, 0);
break;
case INVERSION_ON: tda1004x_write_mask(i2c, TDA1004X_CONFC1, 0x20, 0x20);
break;
default: return -EINVAL;
}
// set guard interval
switch (fe_params->u.ofdm.guard_interval)
{
case GUARD_INTERVAL_1_32: tda1004x_write_mask(i2c, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
case GUARD_INTERVAL_1_16: tda1004x_write_mask(i2c, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
break;
case GUARD_INTERVAL_1_8: tda1004x_write_mask(i2c, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
break;
case GUARD_INTERVAL_1_4: tda1004x_write_mask(i2c, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
break;
case GUARD_INTERVAL_AUTO: tda1004x_write_mask(i2c, TDA1004X_AUTO, 2, 2);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
default: return -EINVAL;
}
// set transmission mode
switch (fe_params->u.ofdm.transmission_mode)
{
case TRANSMISSION_MODE_2K: tda1004x_write_mask(i2c, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x10, 0 << 4);
break;
case TRANSMISSION_MODE_8K: tda1004x_write_mask(i2c, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x10, 1 << 4);
break;
case TRANSMISSION_MODE_AUTO: tda1004x_write_mask(i2c, TDA1004X_AUTO, 4, 4);
tda1004x_write_mask(i2c, TDA1004X_IN_CONF1, 0x10, 0);
break;
default: return -EINVAL;
}
// start the lock
tda1004x_write_mask(i2c, TDA1004X_AUTO, 0x40, 0x40);
msleep(10);
// done
return 0;
}
// Get frontend parameters (FE_GET_FRONTEND ioctl)
static int tda1004x_get_fe(struct dvb_frontend *fe, struct dvb_frontend_parameters *fe_params)
{
struct tda1004x_state *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->i2c;
DEBUG(0,"%s\n", __FUNCTION__);
// inversion status
fe_params->inversion = INVERSION_OFF;
if (tda1004x_read_byte(i2c, TDA1004X_CONFC1) & 0x20)
fe_params->inversion = INVERSION_ON;
// need to invert the inversion for TT TDA10046H
fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
// bandwidth
switch (tda1004x_read_byte(i2c, TDA10046H_TIME_WREF1))
{
case 0x60: fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0x6e: fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x80: fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
// FEC
fe_params->u.ofdm.code_rate_HP = tda1004x_decode_fec(tda1004x_read_byte(i2c, TDA1004X_OUT_CONF2) & 7);
fe_params->u.ofdm.code_rate_LP = tda1004x_decode_fec((tda1004x_read_byte(i2c, TDA1004X_OUT_CONF2) >> 3) & 7);
// constellation
switch (tda1004x_read_byte(i2c, TDA1004X_OUT_CONF1) & 3)
{
case 0: fe_params->u.ofdm.constellation = QPSK;
break;
case 1: fe_params->u.ofdm.constellation = QAM_16;
break;
case 2: fe_params->u.ofdm.constellation = QAM_64;
break;
}
// transmission mode
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
if (tda1004x_read_byte(i2c, TDA1004X_OUT_CONF1) & 0x10)
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
// guard interval
switch ((tda1004x_read_byte(i2c, TDA1004X_OUT_CONF1) & 0x0c) >> 2)
{
case 0: fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
break;
case 1: fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
break;
case 2: fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3: fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
break;
}
// hierarchy
switch ((tda1004x_read_byte(i2c, TDA1004X_OUT_CONF1) & 0x60) >> 5)
{
case 0: fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
break;
case 1: fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
break;
case 2: fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
break;
case 3: fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
break;
}
// done
return 0;
}
// Read chip status (FE_READ_STATUS ioctl)
static int tda1004x_read_status(struct dvb_frontend *fe, fe_status_t * fe_status)
{
struct tda1004x_state *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->i2c;
int status;
int cber;
DEBUG(0,"%s\n", __FUNCTION__);
// read status
status = tda1004x_read_byte(i2c, TDA1004X_STATUS_CD);
if (status == -1)
return -EIO;
// decode
*fe_status = 0;
if (status & 4) *fe_status |= FE_HAS_SIGNAL;
if (status & 2) *fe_status |= FE_HAS_CARRIER;
if (status & 8) *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
// if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
// is getting anything valid
if (!(*fe_status & FE_HAS_VITERBI))
{
// read the CBER
cber = tda1004x_read_byte(i2c, TDA1004X_CBER_LSB);
if (cber == -1) return -EIO;
status = tda1004x_read_byte(i2c, TDA1004X_CBER_MSB);
if (status == -1) return -EIO;
cber |= (status << 8);
tda1004x_read_byte(i2c, TDA1004X_CBER_RESET);
if (cber != 65535)
*fe_status |= FE_HAS_VITERBI;
}
/*// if we DO have some valid VITERBI output, but don't already have SYNC
// bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
// read the VBER
vber = tda1004x_read_byte(i2c, TDA1004X_VBER_LSB);
if (vber == -1) return -EIO;
status = tda1004x_read_byte(i2c, TDA1004X_VBER_MID);
if (status == -1) return -EIO;
vber |= (status << 8);
status = tda1004x_read_byte(i2c, TDA1004X_VBER_MSB);
if (status == -1) return -EIO;
vber |= ((status << 16) & 0x0f);
tda1004x_read_byte(i2c, TDA1004X_CVBER_LUT);
// if RS has passed some valid TS packets, then we must be
// getting some SYNC bytes
if (vber < 16632)
*fe_status |= FE_HAS_SYNC;
}*/
// success
DEBUG(0,"%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
return 0;
}
// Read the signal strength (FE_READ_SIGNAL_STRENGTH ioctl)
static int tda1004x_read_signal_strength(struct dvb_frontend *fe, u16 *signal)
{
struct tda1004x_state *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->i2c;
int tmp;
int reg = 0;
DEBUG(0,"%s\n", __FUNCTION__);
reg = TDA10046H_AGC_IF_LEVEL;
// read it
tmp = tda1004x_read_byte(i2c, reg);
if (tmp < 0)
return -EIO;
// done
*signal = (tmp << 8) | tmp;
DEBUG(0,"%s: signal=0x%x\n", __FUNCTION__, *signal);
return 0;
}
// Read the signal noise ratio (FE_READ_SNR ioctl)
static int tda1004x_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct tda1004x_state *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->i2c;
int tmp;
DEBUG(0,"%s\n", __FUNCTION__);
// read it
tmp = tda1004x_read_byte(i2c, TDA1004X_SNR);
if (tmp < 0)
return -EIO;
if (tmp) {
tmp = 255 - tmp;
}
// done
*snr = ((tmp << 8) | tmp);
DEBUG(0,"%s: snr=0x%x\n", __FUNCTION__, *snr);
return 0;
}
// Read the number of uncorrected blocks (FE_READ_UNCORRECTED_BLOCKS ioctl)
static int tda1004x_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct tda1004x_state *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->i2c;
int tmp;
int tmp2;
int counter;
DEBUG(0,"%s\n", __FUNCTION__);
// read the UCBLOCKS and reset
counter = 0;
tmp = tda1004x_read_byte(i2c, TDA1004X_UNCOR);
if (tmp < 0)
return -EIO;
tmp &= 0x7f;
while (counter++ < 5)
{
tda1004x_write_mask(i2c, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(i2c, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(i2c, TDA1004X_UNCOR, 0x80, 0);
tmp2 = tda1004x_read_byte(i2c, TDA1004X_UNCOR);
if (tmp2 < 0)
return -EIO;
tmp2 &= 0x7f;
if ((tmp2 < tmp) || (tmp2 == 0))
break;
}
// done
if (tmp != 0x7f)
*ucblocks = tmp;
else
*ucblocks = 0xffffffff;
DEBUG(0,"%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
return 0;
}
// Read the Bit Error Rate (FE_READ_BER ioctl)
static int tda1004x_read_ber(struct dvb_frontend *fe, u32* ber)
{
struct tda1004x_state *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->i2c;
int tmp;
DEBUG(0,"%s\n", __FUNCTION__);
// read it in
tmp = tda1004x_read_byte(i2c, TDA1004X_CBER_LSB);
if (tmp < 0) return -EIO;
*ber = tmp << 1;
tmp = tda1004x_read_byte(i2c, TDA1004X_CBER_MSB);
if (tmp < 0) return -EIO;
*ber |= (tmp << 9);
tda1004x_read_byte(i2c, TDA1004X_CBER_RESET);
// done
DEBUG(0,"%s: ber=0x%x\n", __FUNCTION__, *ber);
return 0;
}
// Initialize demodulator (FE_INIT ioctl)
static int tda10046_init(struct dvb_frontend *fe)
{
struct tda1004x_state *state = fe->demodulator_priv;
struct i2c_adapter *i2c = state->i2c;
int status = 0;
status |= tda10046_write_byte(i2c, TDA10046H_CONFPLL2, 0xa);
status |= tda10046_write_byte(i2c, TDA10046H_CONFPLL3, 0x03);
status |= tda10046_write_byte(i2c, TDA10046H_FREQ_OFFSET, 0x64);
status |= tda10046_write_byte(i2c, TDA10046H_FREQ_PHY2_MSB, 0xd4);
status |= tda10046_write_byte(i2c, TDA10046H_FREQ_PHY2_LSB, 0x2a);
status |= tda10046_write_byte(i2c, TDA10046H_TIME_WREF1, 0x60);
status |= tda10046_write_byte(i2c, TDA10046H_TIME_WREF2, 0x12);
status |= tda10046_write_byte(i2c, TDA10046H_TIME_WREF3, 0xa8);
status |= tda10046_write_byte(i2c, TDA10046H_TIME_WREF4, 0xe4);
status |= tda10046_write_byte(i2c, TDA10046H_TIME_WREF5, 0xbd);
status |= tda1004x_write_mask(i2c, TDA1004X_CONFC4, 0x20, 0);
status |= tda1004x_write_mask(i2c, TDA1004X_CONFC1, 0xa0, 0x20);
status |= tda10046_write_byte(i2c, TDA10046H_AGC_CONF, 0);
status |= tda1004x_write_mask(i2c, TDA10046H_CONF_POLARITY, 0x60, 0x60);
status |= tda10046_write_byte(i2c, TDA10046H_AGC_TUN_MIN, 0);
status |= tda10046_write_byte(i2c, TDA10046H_AGC_TUN_MAX, 0xff);
status |= tda10046_write_byte(i2c, TDA10046H_AGC_IF_MIN, 0);
status |= tda10046_write_byte(i2c, TDA10046H_AGC_IF_MAX, 0xff);
status |= tda1004x_write_mask(i2c, TDA10046H_CVBER_CTRL, 0x30, 0x20);
status |= tda1004x_write_mask(i2c, TDA1004X_IT_SEL, 0x08, 0x08);
status |= tda10046_write_byte(i2c, TDA10046H_AGC_GAINS, 0x1);
status |= tda1004x_write_mask(i2c, TDA1004X_AUTO, 0x80, 0);
status |= tda10046_write_byte(i2c, TDA1004X_CONF_TS1, 0x7);
status |= tda1004x_write_mask(i2c, TDA1004X_CONF_TS2, 0x31, 0);
status |= tda1004x_write_mask(i2c, TDA10046H_CONF_TRISTATE1, 0x9e, 0);
status |= tda10046_write_byte(i2c, TDA10046H_CONF_TRISTATE2, 0xbc);
status |= tda10046_write_byte(i2c, TDA10046H_GPIO_OUT_SEL, 0xfc);
status |= tda10046_write_byte(i2c, TDA10046H_GPIO_SP_DS3, 0);
status |= tda10046_write_byte(i2c, TDA10046H_CHANNEL_INFO1, 0);
status |= tda10046_write_byte(i2c, TDA1004X_CONFADC2, 0x74);
status |= tda10046_write_byte(i2c, TDA1004X_CONFADC2, 0x34);
// upload firmware
DEBUG(0,"%s: Uploading firmware",__FUNCTION__);
status |= tda1004x_fwupload(i2c);
return status;
}
// Disable tuner activity (FE_SLEEP ioctl)
static int tda1004x_sleep(struct dvb_frontend *fe)
{
// Do nothing... for the moment
//tda1004x_write_mask(i2c, TDA1004X_CONFC4, 1, 1);
return 0;
}
static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
fesettings->min_delay_ms = 800;
fesettings->step_size = 166667;
fesettings->max_drift = 166667*2;
return 0;
}
static void tda1004x_release(struct dvb_frontend *fe)
{
struct tda1004x_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops tda10046_ops = {
.info = {
.name = "Philips TDA10046H DVB-T",
.type = FE_OFDM,
.frequency_min = TDA10046_RF_MIN,
.frequency_max = TDA10046_RF_MAX,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
},
.release = tda1004x_release,
.init = tda10046_init,
.sleep = tda1004x_sleep,
.set_frontend = tda1004x_set_fe,
.get_frontend = tda1004x_get_fe,
.get_tune_settings = tda1004x_get_tune_settings,
.read_status = tda1004x_read_status,
.read_ber = tda1004x_read_ber,
.read_signal_strength = tda1004x_read_signal_strength,
.read_snr = tda1004x_read_snr,
.read_ucblocks = tda1004x_read_ucblocks,
};
struct dvb_frontend *tda10046_attach(const struct tda1004x_config *config, struct i2c_adapter *i2c)
{
struct tda1004x_state* state;
DEBUG(0,"%s\n", __FUNCTION__);
state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
if (!state)
goto error;
state->config = config;
state->i2c = i2c;
memcpy(&state->ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
state->initialised = 0;
state->demod_type = TDA1004X_DEMOD_TDA10046;
if (tda1004x_read_byte(i2c, TDA1004X_CHIPID) != 0x46)
goto error;
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(tda10046_attach);
|