summaryrefslogtreecommitdiff
path: root/device.h
blob: d13b896cf6534d9e835e8bb5360bbe0b9b1d2e60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 * device.h: The basic device interface
 *
 * See the main source file 'vdr.c' for copyright information and
 * how to reach the author.
 *
 * $Id: device.h 1.65 2005/09/17 14:29:28 kls Exp $
 */

#ifndef __DEVICE_H
#define __DEVICE_H

#include "channels.h"
#include "ci.h"
#include "eit.h"
#include "filter.h"
#include "nit.h"
#include "pat.h"
#include "ringbuffer.h"
#include "sdt.h"
#include "sections.h"
#include "spu.h"
#include "thread.h"
#include "tools.h"

#define MAXDEVICES         16 // the maximum number of devices in the system
#define MAXPIDHANDLES      64 // the maximum number of different PIDs per device
#define MAXRECEIVERS       16 // the maximum number of receivers per device
#define MAXVOLUME         255
#define VOLUMEDELTA         5 // used to increase/decrease the volume

#define TS_SIZE          188
#define TS_SYNC_BYTE     0x47
#define PID_MASK_HI      0x1F

enum eSetChannelResult { scrOk, scrNotAvailable, scrNoTransfer, scrFailed };

enum ePlayMode { pmNone,           // audio/video from decoder
                 pmAudioVideo,     // audio/video from player
                 pmAudioOnly,      // audio only from player, video from decoder
                 pmAudioOnlyBlack, // audio only from player, no video (black screen)
                 pmVideoOnly,      // video only from player, audio from decoder
                 pmExtern_THIS_SHOULD_BE_AVOIDED
                 // external player (e.g. MPlayer), release the device
                 // WARNING: USE THIS MODE ONLY AS A LAST RESORT, IF YOU
                 // ABSOLUTELY, POSITIVELY CAN'T IMPLEMENT YOUR PLAYER
                 // THE WAY IT IS SUPPOSED TO WORK. FORCING THE DEVICE
                 // TO RELEASE ITS FILES HANDLES (OR WHATEVER RESOURCES
                 // IT MAY USE) TO ALLOW AN EXTERNAL PLAYER TO ACCESS
                 // THEM MEANS THAT SUCH A PLAYER WILL NEED TO HAVE
                 // DETAILED KNOWLEDGE ABOUT THE INTERNALS OF THE DEVICE
                 // IN USE. AS A CONSEQUENCE, YOUR PLAYER MAY NOT WORK
                 // IF A PARTICULAR VDR INSTALLATION USES A DEVICE NOT
                 // KNOWN TO YOUR PLAYER.
               };

enum eVideoSystem { vsPAL,
                    vsNTSC
                  };

enum eVideoDisplayFormat { vdfPanAndScan,
                           vdfLetterBox,
                           vdfCenterCutOut
                         };

enum eTrackType { ttNone,
                  ttAudio,
                  ttAudioFirst = ttAudio,
                  ttAudioLast  = ttAudioFirst + 31, // MAXAPIDS - 1
                  ttDolby,
                  ttDolbyFirst = ttDolby,
                  ttDolbyLast  = ttDolbyFirst + 15, // MAXDPIDS - 1
                  /* future...
                  ttSubtitle,
                  ttSubtitleFirst = ttSubtitle,
                  ttSubtitleLast  = ttSubtitleFirst + 7, // MAXSPIDS - 1
                  */
                  ttMaxTrackTypes
                };

#define IS_AUDIO_TRACK(t) (ttAudioFirst <= (t) && (t) <= ttAudioLast)
#define IS_DOLBY_TRACK(t) (ttDolbyFirst <= (t) && (t) <= ttDolbyLast)

struct tTrackId {
  uint16_t id;                  // The PES packet id or the PID.
  char language[MAXLANGCODE2];  // something like either "eng" or "deu+eng"
  char description[32];         // something like "Dolby Digital 5.1"
  };

class cPlayer;
class cReceiver;
class cPesAssembler;

/// The cDevice class is the base from which actual devices can be derived.

class cDevice : public cThread {
private:
  static int numDevices;
  static int useDevice;
  static cDevice *device[MAXDEVICES];
  static cDevice *primaryDevice;
public:
  static int NumDevices(void) { return numDevices; }
         ///< Returns the total number of devices.
  static bool WaitForAllDevicesReady(int Timeout = 0);
         ///< Waits until all devices have become ready, or the given Timeout
         ///< (seconds) has expired. While waiting, the Ready() function of each
         ///< device is called in turn, until they all return true.
         ///< \return True if all devices have become ready within the given
         ///< timeout.
  static void SetUseDevice(int n);
         ///< Sets the 'useDevice' flag of the given device.
         ///< If this function is not called before initializing, all devices
         ///< will be used.
  static bool UseDevice(int n) { return useDevice == 0 || (useDevice & (1 << n)) != 0; }
         ///< Tells whether the device with the given card index shall be used in
         ///< this instance of VDR.
  static bool SetPrimaryDevice(int n);
         ///< Sets the primary device to 'n'.
         ///< \param n must be in the range 1...numDevices.
         ///< \return true if this was possible.
  static cDevice *PrimaryDevice(void) { return primaryDevice; }
         ///< Returns the primary device.
  static cDevice *ActualDevice(void);
         ///< Returns the actual receiving device in case of Transfer Mode, or the
         ///< primary device otherwise.
  static cDevice *GetDevice(int Index);
         ///< Gets the device with the given Index.
         ///< \param Index must be in the range 0..numDevices-1.
         ///< \return A pointer to the device, or NULL if the Index was invalid.
  static cDevice *GetDevice(const cChannel *Channel, int Priority = -1, bool *NeedsDetachReceivers = NULL);
         ///< Returns a device that is able to receive the given Channel at the
         ///< given Priority.
         ///< See ProvidesChannel() for more information on how
         ///< priorities are handled, and the meaning of NeedsDetachReceivers.
  static void Shutdown(void);
         ///< Closes down all devices.
         ///< Must be called at the end of the program.
private:
  static int nextCardIndex;
  int cardIndex;
protected:
  cDevice(void);
  virtual ~cDevice();
  virtual bool Ready(void);
         ///< Returns true if this device is ready. Devices with conditional
         ///< access hardware may need some time until they are up and running.
         ///< This function is called in a loop at startup until all devices
         ///< are ready (see WaitForAllDevicesReady()).
  static int NextCardIndex(int n = 0);
         ///< Calculates the next card index.
         ///< Each device in a given machine must have a unique card index, which
         ///< will be used to identify the device for assigning Ca parameters and
         ///< deciding whether to actually use that device in this particular
         ///< instance of VDR. Every time a new cDevice is created, it will be
         ///< given the current nextCardIndex, and then nextCardIndex will be
         ///< automatically incremented by 1. A derived class can determine whether
         ///< a given device shall be used by checking UseDevice(NextCardIndex()).
         ///< If a device is skipped, or if there are possible device indexes left
         ///< after a derived class has set up all its devices, NextCardIndex(n)
         ///< must be called, where n is the number of card indexes to skip.
  virtual void MakePrimaryDevice(bool On);
         ///< Informs a device that it will be the primary device. If there is
         ///< anything the device needs to set up when it becomes the primary
         ///< device (On = true) or to shut down when it no longer is the primary
         ///< device (On = false), it should do so in this function.
public:
  bool IsPrimaryDevice(void) const { return this == primaryDevice; }
  int CardIndex(void) const { return cardIndex; }
         ///< Returns the card index of this device (0 ... MAXDEVICES - 1).
  int DeviceNumber(void) const;
         ///< Returns the number of this device (0 ... MAXDEVICES - 1).
  virtual int ProvidesCa(const cChannel *Channel) const;//XXX PLUGINS.html!!!
         //XXX describe changed functionality!!!
         ///< Checks whether this device provides the given value in its
         ///< caCaps. Returns 0 if the value is not provided, 1 if only this
         ///< value is provided, and > 1 if this and other values are provided.
         ///< If the given value is equal to the number of this device,
         ///< 1 is returned. If it is 0 (FTA), 1 plus the number of other values
         ///< in caCaps is returned.
  virtual bool HasDecoder(void) const;
         ///< Tells whether this device has an MPEG decoder.

// SPU facilities

public:
  virtual cSpuDecoder *GetSpuDecoder(void);
         ///< Returns a pointer to the device's SPU decoder (or NULL, if this
         ///< device doesn't have an SPU decoder).

// Channel facilities

protected:
  static int currentChannel;
public:
  virtual bool ProvidesSource(int Source) const;
         ///< Returns true if this device can provide the given source.
  virtual bool ProvidesTransponder(const cChannel *Channel) const;
         ///< XXX -> PLUGINS.html!
  virtual bool ProvidesTransponderExclusively(const cChannel *Channel) const;
         ///< Returns true if this is the only device that is able to provide
         ///< the given channel's transponder.
  virtual bool ProvidesChannel(const cChannel *Channel, int Priority = -1, bool *NeedsDetachReceivers = NULL) const;
         ///< Returns true if this device can provide the given channel.
         ///< In case the device has cReceivers attached to it or it is the primary
         ///< device, Priority is used to decide whether the caller's request can
         ///< be honored.
         ///< The special Priority value -1 will tell the caller whether this device
         ///< is principally able to provide the given Channel, regardless of any
         ///< attached cReceivers.
         ///< If NeedsDetachReceivers is given, the resulting value in it will tell the
         ///< caller whether or not it will have to detach any currently attached
         ///< receivers from this device before calling SwitchChannel. Note
         ///< that the return value in NeedsDetachReceivers is only meaningful if the
         ///< function itself actually returns true.
         ///< The default implementation always returns false, so a derived cDevice
         ///< class that can provide channels must implement this function.
  bool SwitchChannel(const cChannel *Channel, bool LiveView);
         ///< Switches the device to the given Channel, initiating transfer mode
         ///< if necessary.
  static bool SwitchChannel(int Direction);
         ///< Switches the primary device to the next available channel in the given
         ///< Direction (only the sign of Direction is evaluated, positive values
         ///< switch to higher channel numbers).
private:
  eSetChannelResult SetChannel(const cChannel *Channel, bool LiveView);
         ///< Sets the device to the given channel (general setup).
protected:
  virtual bool SetChannelDevice(const cChannel *Channel, bool LiveView);
         ///< Sets the device to the given channel (actual physical setup).
public:
  static int CurrentChannel(void) { return primaryDevice ? currentChannel : 0; }
         ///< Returns the number of the current channel on the primary device.
  virtual bool HasLock(int TimeoutMs = 0);//XXX PLUGINS.html
         ///< Returns true if the device has a lock on the requested transponder.
         ///< Default is true, a specific device implementation may return false
         ///< to indicate that it is not ready yet.
         ///< If TimeoutMs is not zero, waits for the given number of milliseconds
         ///< before returning false.
  virtual bool HasProgramme(void);
         ///< Returns true if the device is currently showing any programme to
         ///< the user, either through replaying or live.

// PID handle facilities

private:
  virtual void Action(void);
protected:
  enum ePidType { ptAudio, ptVideo, ptPcr, ptTeletext, ptDolby, ptOther };
  class cPidHandle {
  public:
    int pid;
    int handle;
    int used;
    cPidHandle(void) { pid = used = 0; handle = -1; }
    };
  cPidHandle pidHandles[MAXPIDHANDLES];
  bool HasPid(int Pid) const;
         ///< Returns true if this device is currently receiving the given PID.
  bool AddPid(int Pid, ePidType PidType = ptOther);
         ///< Adds a PID to the set of PIDs this device shall receive.
  void DelPid(int Pid, ePidType PidType = ptOther);
         ///< Deletes a PID from the set of PIDs this device shall receive.
  virtual bool SetPid(cPidHandle *Handle, int Type, bool On);
         ///< Does the actual PID setting on this device.
         ///< On indicates whether the PID shall be added or deleted.
         ///< Handle->handle can be used by the device to store information it
         ///< needs to receive this PID (for instance a file handle).
         ///< Handle->used indicates how many receivers are using this PID.
         ///< Type indicates some special types of PIDs, which the device may
         ///< need to set in a specific way.

// Section filter facilities

private:
  cSectionHandler *sectionHandler;
  cEitFilter *eitFilter;
  cPatFilter *patFilter;
  cSdtFilter *sdtFilter;
  cNitFilter *nitFilter;
protected:
  void StartSectionHandler(void);
       ///< A derived device that provides section data must call
       ///< this function to actually set up the section handler.
public:
  virtual int OpenFilter(u_short Pid, u_char Tid, u_char Mask);
       ///< Opens a file handle for the given filter data.
       ///< A derived device that provides section data must
       ///< implement this function.
  void AttachFilter(cFilter *Filter);
       ///< Attaches the given filter to this device.
  void Detach(cFilter *Filter);
       ///< Detaches the given filter from this device.

// Common Interface facilities:

protected:
  cCiHandler *ciHandler;
public:
  cCiHandler *CiHandler(void) { return ciHandler; }

// Image Grab facilities

public:
  virtual bool GrabImage(const char *FileName, bool Jpeg = true, int Quality = -1, int SizeX = -1, int SizeY = -1);
         ///< Capture a single frame as an image.
         ///< Grabs the currently visible screen image into the given file, with the
         ///< given parameters.
         ///< \param FileName The name of the file to write. Should include the proper extension.
         ///< \param Jpeg If true will write a JPEG file. Otherwise a PNM file will be written.
         ///< \param Quality The compression factor for JPEG. 1 will create a very blocky
         ///<        and small image, 70..80 will yield reasonable quality images while keeping the
         ///<        image file size around 50 KB for a full frame. The default will create a big
         ///<        but very high quality image.
         ///< \param SizeX The number of horizontal pixels in the frame (default is the current screen width).
         ///< \param SizeY The number of vertical pixels in the frame (default is the current screen height).
         ///< \return True if all went well. */

// Video format facilities

public:
  virtual void SetVideoDisplayFormat(eVideoDisplayFormat VideoDisplayFormat);
         ///< Sets the video display format to the given one (only useful
         ///< if this device has an MPEG decoder).
         ///< A derived class must first call the base class function!
  virtual void SetVideoFormat(bool VideoFormat16_9);
         ///< Sets the output video format to either 16:9 or 4:3 (only useful
         ///< if this device has an MPEG decoder).
  virtual eVideoSystem GetVideoSystem(void);
         ///< Returns the video system of the currently displayed material
         ///< (default is PAL).

// Track facilities

private:
  tTrackId availableTracks[ttMaxTrackTypes];
  eTrackType currentAudioTrack;
  int currentAudioTrackMissingCount;
  bool pre_1_3_19_PrivateStream;
protected:
  virtual void SetAudioTrackDevice(eTrackType Type);
       ///< Sets the current audio track to the given value.
public:
  void ClrAvailableTracks(bool DescriptionsOnly = false);
  bool SetAvailableTrack(eTrackType Type, int Index, uint16_t Id, const char *Language = NULL, const char *Description = NULL);
       ///< Sets the track of the given Type and Index to the given values.
       ///< Type must be one of the basic eTrackType values, like ttAudio or ttDolby.
       ///< Index tells which track of the given basic type is meant.
       ///< If Id is 0 any existing id will be left untouched and only the
       ///< given Language and Description will be set.
       ///< \return Returns true if the track was set correctly, false otherwise.
  const tTrackId *GetTrack(eTrackType Type);
       ///< Returns a pointer to the given track id, or NULL if Type is not
       ///< less than ttMaxTrackTypes.
  int NumAudioTracks(void) const;
       ///< Returns the number of audio tracks that are currently available.
       ///< This is just for information, to quickly find out whether there
       ///< is more than one audio track.
  eTrackType GetCurrentAudioTrack(void) { return currentAudioTrack; }
  bool SetCurrentAudioTrack(eTrackType Type);
       ///< Sets the current audio track to the given Type.
       ///< \return Returns true if Type is a valid audio track, false otherwise.
  void EnsureAudioTrack(bool Force = false);
       ///< Makes sure an audio track is selected that is actually available.
       ///< If Force is true, the language and Dolby Digital settings will
       ///< be verified even if the current audio track is available.

// Audio facilities

private:
  bool mute;
  int volume;
protected:
  virtual int GetAudioChannelDevice(void);
       ///< Gets the current audio channel, which is stereo (0), mono left (1) or
       ///< mono right (2).
  virtual void SetAudioChannelDevice(int AudioChannel);
       ///< Sets the audio channel to stereo (0), mono left (1) or mono right (2).
  virtual void SetVolumeDevice(int Volume);
       ///< Sets the audio volume on this device (Volume = 0...255).
  virtual void SetDigitalAudioDevice(bool On);
       ///< Tells the actual device that digital audio output shall be switched
       ///< on or off.
public:
  bool IsMute(void) const { return mute; }
  bool ToggleMute(void);
       ///< Turns the volume off or on and returns the new mute state.
  int GetAudioChannel(void);
       ///< Gets the current audio channel, which is stereo (0), mono left (1) or
       ///< mono right (2).
  void SetAudioChannel(int AudioChannel);
       ///< Sets the audio channel to stereo (0), mono left (1) or mono right (2).
       ///< Any other values will be silently ignored.
  void SetVolume(int Volume, bool Absolute = false);
       ///< Sets the volume to the given value, either absolutely or relative to
       ///< the current volume.
  static int CurrentVolume(void) { return primaryDevice ? primaryDevice->volume : 0; }//XXX???

// Player facilities

private:
  cPlayer *player;
  cPesAssembler *pesAssembler;
protected:
  virtual bool CanReplay(void) const;
       ///< Returns true if this device can currently start a replay session.
  virtual bool SetPlayMode(ePlayMode PlayMode);
       ///< Sets the device into the given play mode.
       ///< \return true if the operation was successful.
  virtual int PlayVideo(const uchar *Data, int Length);
       ///< Plays the given data block as video.
       ///< Data points to exactly one complete PES packet of the given Length.
       ///< PlayVideo() shall process the packet either as a whole (returning
       ///< Length) or not at all (returning 0 or -1 and setting 'errno' to EAGAIN).
       ///< \return Returns the number of bytes actually taken from Data, or -1
       ///< in case of an error.
  virtual int PlayAudio(const uchar *Data, int Length);
       ///< Plays the given data block as audio.
       ///< Data points to exactly one complete PES packet of the given Length.
       ///< PlayAudio() shall process the packet either as a whole (returning
       ///< Length) or not at all (returning 0 or -1 and setting 'errno' to EAGAIN).
       ///< \return Returns the number of bytes actually taken from Data, or -1
       ///< in case of an error.
  virtual int PlayPesPacket(const uchar *Data, int Length, bool VideoOnly = false);
       ///< Plays the single PES packet in Data with the given Length.
       ///< If VideoOnly is true, only the video will be displayed,
       ///< which is necessary for trick modes like 'fast forward'.
       ///< Data must point to one single, complete PES packet.
public:
  virtual int64_t GetSTC(void);
       ///< Gets the current System Time Counter, which can be used to
       ///< synchronize audio and video. If this device is unable to
       ///< provide the STC, -1 will be returned.
  virtual void TrickSpeed(int Speed);
       ///< Sets the device into a mode where replay is done slower.
       ///< Every single frame shall then be displayed the given number of
       ///< times.
  virtual void Clear(void);
       ///< Clears all video and audio data from the device.
       ///< A derived class must call the base class function to make sure
       ///< all registered cAudio objects are notified.
  virtual void Play(void);
       ///< Sets the device into play mode (after a previous trick
       ///< mode).
  virtual void Freeze(void);
       ///< Puts the device into "freeze frame" mode.
  virtual void Mute(void);
       ///< Turns off audio while replaying.
       ///< A derived class must call the base class function to make sure
       ///< all registered cAudio objects are notified.
  virtual void StillPicture(const uchar *Data, int Length);
       ///< Displays the given I-frame as a still picture.
  virtual bool Poll(cPoller &Poller, int TimeoutMs = 0);
       ///< Returns true if the device itself or any of the file handles in
       ///< Poller is ready for further action.
       ///< If TimeoutMs is not zero, the device will wait up to the given number
       ///< of milleseconds before returning in case it can't accept any data.
  virtual bool Flush(int TimeoutMs = 0);
       ///< Returns true if the device's output buffers are empty, i. e. any
       ///< data which was bufferd so far has been processed.
       ///< If TimeoutMs is not zero, the device will wait up to the given
       ///< number of milliseconds before returning in case there is still
       ///< data in the buffers..
  virtual int PlayPes(const uchar *Data, int Length, bool VideoOnly = false);
       ///< Plays all valid PES packets in Data with the given Length.
       ///< If Data is NULL any leftover data from a previous call will be
       ///< discarded. If VideoOnly is true, only the video will be displayed,
       ///< which is necessary for trick modes like 'fast forward'.
       ///< Data should point to a sequence of complete PES packets. If the
       ///< last packet in Data is not complete, it will be copied and combined
       ///< to a complete packet with data from the next call to PlayPes().
       ///< That way any functions called from within PlayPes() will be
       ///< guaranteed to always receive complete PES packets.
  bool Replaying(void) const;
       ///< Returns true if we are currently replaying.
  void StopReplay(void);
       ///< Stops the current replay session (if any).
  bool AttachPlayer(cPlayer *Player);
       ///< Attaches the given player to this device.
  void Detach(cPlayer *Player);
       ///< Detaches the given player from this device.

// Receiver facilities

private:
  cMutex mutexReceiver;
  cReceiver *receiver[MAXRECEIVERS];
protected:
  int Priority(void) const;
      ///< Returns the priority of the current receiving session (0..MAXPRIORITY),
      ///< or -1 if no receiver is currently active. The primary device will
      ///< always return at least Setup.PrimaryLimit-1.
  virtual bool OpenDvr(void);
      ///< Opens the DVR of this device and prepares it to deliver a Transport
      ///< Stream for use in a cReceiver.
  virtual void CloseDvr(void);
      ///< Shuts down the DVR.
  virtual bool GetTSPacket(uchar *&Data);
      ///< Gets exactly one TS packet from the DVR of this device and returns
      ///< a pointer to it in Data. Only the first 188 bytes (TS_SIZE) Data
      ///< points to are valid and may be accessed. If there is currently no
      ///< new data available, Data will be set to NULL. The function returns
      ///< false in case of a non recoverable error, otherwise it returns true,
      ///< even if Data is NULL.
public:
  int  Ca(void) const;
       ///< Returns the ca of the current receiving session(s).
  bool Receiving(bool CheckAny = false) const;
       ///< Returns true if we are currently receiving.
  bool AttachReceiver(cReceiver *Receiver);
       ///< Attaches the given receiver to this device.
  void Detach(cReceiver *Receiver);
       ///< Detaches the given receiver from this device.
  void DetachAll(int Pid);
       ///< Detaches all receivers from this device for this pid.
  };

/// Derived cDevice classes that can receive channels will have to provide
/// Transport Stream (TS) packets one at a time. cTSBuffer implements a
/// simple buffer that allows the device to read a larger amount of data
/// from the driver with each call to Read(), thus avoiding the overhead
/// of getting each TS packet separately from the driver. It also makes
/// sure the returned data points to a TS packet and automatically
/// re-synchronizes after broken packets.

class cTSBuffer : public cThread {
private:
  int f;
  int cardIndex;
  bool delivered;
  cRingBufferLinear *ringBuffer;
  virtual void Action(void);
public:
  cTSBuffer(int File, int Size, int CardIndex);
  ~cTSBuffer();
  uchar *Get(void);
  };

#endif //__DEVICE_H