summaryrefslogtreecommitdiff
path: root/vdr_sound.c
blob: b06061c810b43d910b6a9db83f7a0a8c714ed2e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
/*!
 * \file vdr_setup.c
 * \brief Sound manipulation classes for a VDR media plugin (muggle)
 *
 * \version $Revision: 1.2 $
 * \date    $Date: 2004/05/28 15:29:19 $
 * \author  Ralf Klueber, Lars von Wedel, Andreas Kellner
 * \author  Responsible author: $Author: lvw $
 *
 * $Id: vdr_sound.c,v 1.2 2004/05/28 15:29:19 lvw Exp $
 *
 * Adapted from 
 * MP3/MPlayer plugin to VDR (C++)
 * (C) 2001,2002 Stefan Huelswitt <huels@iname.com>
 */

// --- cResample ------------------------------------------------------------

// The resample code has been adapted from the madplay project
// (resample.c) found in the libmad distribution
   
class cResample
{
private:
  mad_fixed_t ratio;
  mad_fixed_t step;
  mad_fixed_t last;
  mad_fixed_t resampled[MAX_NSAMPLES];
public:
  bool SetInputRate(unsigned int oldrate, unsigned int newrate);
  unsigned int ResampleBlock(unsigned int nsamples, const mad_fixed_t *old);
  const mad_fixed_t *Resampled(void) { return resampled; }
  };

bool cResample::SetInputRate(unsigned int oldrate, unsigned int newrate)
{
  if(oldrate<8000 || oldrate>newrate*6) { // out of range
    esyslog("WARNING: samplerate %d out of range 8000-%d\n",oldrate,newrate*6);
    return 0;
    }
  ratio=mad_f_tofixed((double)oldrate/(double)newrate);
  step=0; last=0;
#ifdef DEBUG
  static mad_fixed_t oldratio=0;
  if(oldratio!=ratio) {
    printf("mad: new resample ratio %f (from %d kHz to %d kHz)\n",mad_f_todouble(ratio),oldrate,newrate);
    oldratio=ratio;
    }
#endif
  return ratio!=MAD_F_ONE;
}

unsigned int cResample::ResampleBlock(unsigned int nsamples, const mad_fixed_t *old)
{
  // This resampling algorithm is based on a linear interpolation, which is
  // not at all the best sounding but is relatively fast and efficient.
  //
  // A better algorithm would be one that implements a bandlimited
  // interpolation.

  mad_fixed_t *nsam=resampled;
  const mad_fixed_t *end=old+nsamples;
  const mad_fixed_t *begin=nsam;

  if(step < 0) {
    step = mad_f_fracpart(-step);

    while (step < MAD_F_ONE) {
      *nsam++ = step ? last+mad_f_mul(*old-last,step) : last;
      step += ratio;
      if(((step + 0x00000080L) & 0x0fffff00L) == 0)
	step = (step + 0x00000080L) & ~0x0fffffffL;
      }
    step -= MAD_F_ONE;
    }

  while (end - old > 1 + mad_f_intpart(step)) {
    old += mad_f_intpart(step);
    step = mad_f_fracpart(step);
    *nsam++ = step ? *old + mad_f_mul(old[1] - old[0], step) : *old;
    step += ratio;
    if (((step + 0x00000080L) & 0x0fffff00L) == 0)
      step = (step + 0x00000080L) & ~0x0fffffffL;
    }

  if (end - old == 1 + mad_f_intpart(step)) {
    last = end[-1];
    step = -step;
    }
  else step -= mad_f_fromint(end - old);

  return nsam-begin;
}

// --- cLevel ----------------------------------------------------------------

// The normalize algorithm and parts of the code has been adapted from the
// Normalize 0.7 project. (C) 1999-2002, Chris Vaill <cvaill@cs.columbia.edu>

// A little background on how normalize computes the volume
// of a wav file, in case you want to know just how your
// files are being munged:
//
// The volumes calculated are RMS amplitudes, which corre­
// spond (roughly) to perceived volume. Taking the RMS ampli­
// tude of an entire file would not give us quite the measure
// we want, though, because a quiet song punctuated by short
// loud parts would average out to a quiet song, and the
// adjustment we would compute would make the loud parts
// excessively loud.
//
// What we want is to consider the maximum volume of the
// file, and normalize according to that. We break up the
// signal into 100 chunks per second, and get the signal
// power of each chunk, in order to get an estimation of
// "instantaneous power" over time. This "instantaneous
// power" signal varies too much to get a good measure of the
// original signal's maximum sustained power, so we run a
// smoothing algorithm over the power signal (specifically, a
// mean filter with a window width of 100 elements). The max­
// imum point of the smoothed power signal turns out to be a
// good measure of the maximum sustained power of the file.
// We can then take the square root of the power to get maxi­
// mum sustained RMS amplitude.

class cLevel {
private:
  double maxpow;
  mad_fixed_t peak;
  struct Power {
    // smooth
    int npow, wpow;
    double powsum, pows[POW_WIN];
    // sum
    unsigned int nsum;
    double sum;
    } power[2];
  //
  inline void AddPower(struct Power *p, double pow);
public:
  void Init(void);
  void GetPower(struct mad_pcm *pcm);
  double GetLevel(void);
  double GetPeak(void);
  };

void cLevel::Init(void)
{
  for(int l=0 ; l<2 ; l++) {
    struct Power *p=&power[l];
    p->sum=p->powsum=0.0; p->wpow=p->npow=p->nsum=0;
    for(int i=POW_WIN-1 ; i>=0 ; i--) p->pows[i]=0.0;
    }
  maxpow=0.0; peak=0;
}

void cLevel::GetPower(struct mad_pcm *pcm)
{
  for(int i=0 ; i<pcm->channels ; i++) {
    struct Power *p=&power[i];
    mad_fixed_t *data=pcm->samples[i];
    for(int n=pcm->length ; n>0 ; n--) {
      if(*data < -peak) peak = -*data;
      if(*data >  peak) peak =  *data;
      double s=mad_f_todouble(*data++);
      p->sum+=(s*s);
      if(++(p->nsum)>=pcm->samplerate/100) {
        AddPower(p,p->sum/(double)p->nsum);
        p->sum=0.0; p->nsum=0;
        }
      }
    }
}

void cLevel::AddPower(struct Power *p, double pow)
{
  p->powsum+=pow;
  if(p->npow>=POW_WIN) {
    if(p->powsum>maxpow) maxpow=p->powsum;
    p->powsum-=p->pows[p->wpow];
    }
  else p->npow++;
  p->pows[p->wpow]=pow;
  p->wpow=(p->wpow+1) % POW_WIN;
}

double cLevel::GetLevel(void)
{
  if(maxpow<EPSILON) {
    // Either this whole file has zero power, or was too short to ever
    // fill the smoothing buffer.  In the latter case, we need to just
    // get maxpow from whatever data we did collect.

    if(power[0].powsum>maxpow) maxpow=power[0].powsum;
    if(power[1].powsum>maxpow) maxpow=power[1].powsum;
    }
  double level=sqrt(maxpow/(double)POW_WIN);     // adjust for the smoothing window size and root
  printf("norm: new volumen level=%f peak=%f\n",level,mad_f_todouble(peak));
  return level;
}

double cLevel::GetPeak(void)
{
  return mad_f_todouble(peak);
}

// --- cNormalize ------------------------------------------------------------

class cNormalize {
private:
  mad_fixed_t gain;
  double d_limlvl, one_limlvl;
  mad_fixed_t limlvl;
  bool dogain, dolimit;
#ifdef DEBUG
  // stats
  unsigned long limited, clipped, total;
  mad_fixed_t peak;
#endif
  // limiter
#ifdef USE_FAST_LIMITER
  mad_fixed_t *table, tablestart;
  int tablesize;
  inline mad_fixed_t FastLimiter(mad_fixed_t x);
#endif
  inline mad_fixed_t Limiter(mad_fixed_t x);
public:
  cNormalize(void);
  ~cNormalize();
  void Init(double Level, double Peak);
  void Stats(void);
  void AddGain(struct mad_pcm *pcm);
  };

cNormalize::cNormalize(void)
{
  d_limlvl = (double)the_setup.LimiterLevel / 100.0;
  one_limlvl = 1 - d_limlvl;
  limlvl = mad_f_tofixed(d_limlvl);
  printf( "norm: lim_lev=%f lim_acc=%d\n", d_limlvl, LIM_ACC );

#ifdef USE_FAST_LIMITER
  mad_fixed_t start=limlvl & ~(F_LIM_JMP-1);
  tablestart=start;
  tablesize=(unsigned int)(F_LIM_MAX-start)/F_LIM_JMP + 2;
  table=new mad_fixed_t[tablesize];
  if(table) {
    printf("norm: table size=%d start=%08x jump=%08x\n",tablesize,start,F_LIM_JMP);
    for(int i=0 ; i<tablesize ; i++) {
      table[i]=Limiter(start);
      start+=F_LIM_JMP;
      }
    tablesize--; // avoid a -1 in FastLimiter()

    // do a quick accuracy check, just to be sure that FastLimiter() is working
    // as expected :-)
#ifdef ACC_DUMP
    FILE *out=fopen("/tmp/limiter","w");
#endif
    mad_fixed_t maxdiff=0;
    for(mad_fixed_t x=F_LIM_MAX ; x>=limlvl ; x-=mad_f_tofixed(1e-4)) {
      mad_fixed_t diff=mad_f_abs(Limiter(x)-FastLimiter(x));
      if(diff>maxdiff) maxdiff=diff;
#ifdef ACC_DUMP
      fprintf(out,"%0.10f\t%0.10f\t%0.10f\t%0.10f\t%0.10f\n",
        mad_f_todouble(x),mad_f_todouble(Limiter(x)),mad_f_todouble(FastLimiter(x)),mad_f_todouble(diff),mad_f_todouble(maxdiff));
      if(ferror(out)) break;
#endif
      }
#ifdef ACC_DUMP
    fclose(out);
#endif
    printf("norm: accuracy %.12f\n",mad_f_todouble(maxdiff));
    if(mad_f_todouble(maxdiff)>1e-6) 
      {
	esyslog("ERROR: accuracy check failed, normalizer disabled");
	delete table; table=0;
      }
    }
  else esyslog("ERROR: no memory for lookup table, normalizer disabled");
#endif // USE_FAST_LIMITER
}

cNormalize::~cNormalize()
{
#ifdef USE_FAST_LIMITER
  delete table;
#endif
}

void cNormalize::Init(double Level, double Peak)
{
  double Target=(double)the_setup.TargetLevel/100.0;
  double dgain=Target/Level;
  if(dgain>MAX_GAIN) dgain=MAX_GAIN;
  gain=mad_f_tofixed(dgain);
  // Check if we actually need to apply a gain
  dogain=(Target>0.0 && fabs(1-dgain)>MIN_GAIN);
#ifdef USE_FAST_LIMITER
  if(!table) dogain=false;
#endif
  // Check if we actually need to do limiting:
  // we have to if limiter is enabled, if gain>1 and if the peaks will clip.
  dolimit=(d_limlvl<1.0 && dgain>1.0 && Peak*dgain>1.0);
#ifdef DEBUG
  printf("norm: gain=%f dogain=%d dolimit=%d (target=%f level=%f peak=%f)\n",dgain,dogain,dolimit,Target,Level,Peak);
  limited=clipped=total=0; peak=0;
#endif
}

void cNormalize::Stats(void)
{
#ifdef DEBUG
  if(total)
    printf("norm: stats tot=%ld lim=%ld/%.3f%% clip=%ld/%.3f%% peak=%.3f\n",
           total,limited,(double)limited/total*100.0,clipped,(double)clipped/total*100.0,mad_f_todouble(peak));
#endif
}

mad_fixed_t cNormalize::Limiter(mad_fixed_t x)
{
// Limiter function:
//
//        / x                                                (for x <= lev)
//   x' = |
//        \ tanh((x - lev) / (1-lev)) * (1-lev) + lev        (for x > lev)
//
// call only with x>=0. For negative samples, preserve sign outside this function
//
// With limiter level = 0, this is equivalent to a tanh() function;
// with limiter level = 1, this is equivalent to clipping.

  if(x>limlvl) {
#ifdef DEBUG
    if(x>MAD_F_ONE) clipped++;
    limited++;
#endif
    x=mad_f_tofixed(tanh((mad_f_todouble(x)-d_limlvl) / one_limlvl) * one_limlvl + d_limlvl);
    }
  return x;
}

#ifdef USE_FAST_LIMITER
mad_fixed_t cNormalize::FastLimiter(mad_fixed_t x)
{
// The fast algorithm is based on a linear interpolation between the
// the values in the lookup table. Relays heavly on libmads fixed point format.

  if(x>limlvl) {
    int i=(unsigned int)(x-tablestart)/F_LIM_JMP;
#ifdef DEBUG
    if(x>MAD_F_ONE) clipped++;
    limited++;
    if(i>=tablesize) printf("norm: overflow x=%f x-ts=%f i=%d tsize=%d\n",
                            mad_f_todouble(x),mad_f_todouble(x-tablestart),i,tablesize);
#endif
    mad_fixed_t r=x & (F_LIM_JMP-1);
    x=MAD_F_ONE;
    if(i<tablesize) {
      mad_fixed_t *ptr=&table[i];
      x=*ptr;
      mad_fixed_t d=*(ptr+1)-x;
      //x+=mad_f_mul(d,r)<<LIM_ACC;                // this is not accurate as mad_f_mul() does >>MAD_F_FRACBITS
                                                   // which is senseless in the case of following <<LIM_ACC.
      x+=((long long)d*(long long)r)>>LIM_SHIFT;   // better, don't know if works on all machines
      }
    }
  return x;
}
#endif

#ifdef USE_FAST_LIMITER
#define LIMITER_FUNC FastLimiter
#else
#define LIMITER_FUNC Limiter
#endif

void cNormalize::AddGain(struct mad_pcm *pcm)
{
  if(dogain) {
    for(int i=0 ; i<pcm->channels ; i++) {
      mad_fixed_t *data=pcm->samples[i];
#ifdef DEBUG
      total+=pcm->length;
#endif
      if(dolimit) {
        for(int n=pcm->length ; n>0 ; n--) {
          mad_fixed_t s=mad_f_mul(*data,gain);
          if(s<0) {
            s=-s;
#ifdef DEBUG
            if(s>peak) peak=s;
#endif
            s=LIMITER_FUNC(s);
            s=-s;
            }
          else {
#ifdef DEBUG
            if(s>peak) peak=s;
#endif
            s=LIMITER_FUNC(s);
            }
          *data++=s;
          }
        }
      else {
        for(int n=pcm->length ; n>0 ; n--) {
          mad_fixed_t s=mad_f_mul(*data,gain);
#ifdef DEBUG
          if(s>peak) peak=s;
          else if(-s>peak) peak=-s;
#endif
          if(s>MAD_F_ONE) s=MAD_F_ONE;   // do clipping
          if(s<-MAD_F_ONE) s=-MAD_F_ONE;
          *data++=s;
          }
        }
      }
    }
}

// --- cScale ----------------------------------------------------------------

// The dither code has been adapted from the madplay project
// (audio.c) found in the libmad distribution

enum eAudioMode { amRound, amDither };

class cScale {
private:
  enum { MIN=-MAD_F_ONE, MAX=MAD_F_ONE - 1 };
#ifdef DEBUG
  // audio stats
  unsigned long clipped_samples;
  mad_fixed_t peak_clipping;
  mad_fixed_t peak_sample;
#endif
  // dither
  struct dither {
    mad_fixed_t error[3];
    mad_fixed_t random;
    } leftD, rightD;
  //
  inline mad_fixed_t Clip(mad_fixed_t sample, bool stats=true);
  inline signed long LinearRound(mad_fixed_t sample);
  inline unsigned long Prng(unsigned long state);
  inline signed long LinearDither(mad_fixed_t sample, struct dither *dither);
public:
  void Init(void);
  void Stats(void);
  unsigned int ScaleBlock(unsigned char *data, unsigned int size, unsigned int &nsamples, const mad_fixed_t * &left, const mad_fixed_t * &right, eAudioMode mode);
  };

void cScale::Init(void)
{
#ifdef DEBUG
  clipped_samples=0; peak_clipping=peak_sample=0;
#endif
  memset(&leftD,0,sizeof(leftD));
  memset(&rightD,0,sizeof(rightD));
}

void cScale::Stats(void)
{
#ifdef DEBUG
  printf("mp3: scale stats clipped=%ld peak_clip=%f peak=%f\n",
         clipped_samples,mad_f_todouble(peak_clipping),mad_f_todouble(peak_sample));
#endif
}

// gather signal statistics while clipping
mad_fixed_t cScale::Clip(mad_fixed_t sample, bool stats)
{
#ifndef DEBUG
  if (sample > MAX) sample = MAX;
  if (sample < MIN) sample = MIN;
#else
  if(!stats) {
    if (sample > MAX) sample = MAX;
    if (sample < MIN) sample = MIN;
    }
  else {
    if (sample >= peak_sample) {
      if (sample > MAX) {
        ++clipped_samples;
        if (sample - MAX > peak_clipping)
	  peak_clipping = sample - MAX;
        sample = MAX;
        }
      peak_sample = sample;
      }
    else if (sample < -peak_sample) {
      if (sample < MIN) {
        ++clipped_samples;
        if (MIN - sample > peak_clipping)
	  peak_clipping = MIN - sample;
        sample = MIN;
        }
      peak_sample = -sample;
      }
    }
#endif
  return sample;
}

// generic linear sample quantize routine
signed long cScale::LinearRound(mad_fixed_t sample)
{
  // round
  sample += (1L << (MAD_F_FRACBITS - OUT_BITS));
  // clip
  sample=Clip(sample);
  // quantize and scale
  return sample >> (MAD_F_FRACBITS + 1 - OUT_BITS);
}

// 32-bit pseudo-random number generator
unsigned long cScale::Prng(unsigned long state)
{
  return (state * 0x0019660dL + 0x3c6ef35fL) & 0xffffffffL;
}

// generic linear sample quantize and dither routine
signed long cScale::LinearDither(mad_fixed_t sample, struct dither *dither)
{
  unsigned int scalebits;
  mad_fixed_t output, mask, random;

  // noise shape
  sample += dither->error[0] - dither->error[1] + dither->error[2];
  dither->error[2] = dither->error[1];
  dither->error[1] = dither->error[0] / 2;
  // bias
  output = sample + (1L << (MAD_F_FRACBITS + 1 - OUT_BITS - 1));
  scalebits = MAD_F_FRACBITS + 1 - OUT_BITS;
  mask = (1L << scalebits) - 1;
  // dither
  random  = Prng(dither->random);
  output += (random & mask) - (dither->random & mask);
  dither->random = random;
  // clip
  output=Clip(output);
  sample=Clip(sample,false);
  // quantize
  output &= ~mask;
  // error feedback
  dither->error[0] = sample - output;
  // scale
  return output >> scalebits;
}

// write a block of signed 16-bit big-endian PCM samples
unsigned int cScale::ScaleBlock(unsigned char *data, unsigned int size, unsigned int &nsamples, const mad_fixed_t * &left, const mad_fixed_t * &right, eAudioMode mode)
{
  signed int sample;
  unsigned int len, res;

  len=size/OUT_FACT; res=size;
  if(len>nsamples) { len=nsamples; res=len*OUT_FACT; }
  nsamples-=len;

  if(right) {  // stereo
    switch (mode) {
      case amRound:
        while (len--) {
          sample  = LinearRound(*left++);
          *data++ = sample >> 8;
          *data++ = sample >> 0;
          sample  = LinearRound(*right++);
          *data++ = sample >> 8;
          *data++ = sample >> 0;
          }
        break;
      case amDither:
        while (len--) {
	  sample  = LinearDither(*left++,&leftD);
	  *data++ = sample >> 8;
	  *data++ = sample >> 0;
	  sample  = LinearDither(*right++,&rightD);
	  *data++ = sample >> 8;
	  *data++ = sample >> 0;
          }
        break;
      }
    }
  else {  // mono, duplicate left channel
    switch (mode) {
      case amRound:
        while (len--) {
	  sample  = LinearRound(*left++);
	  *data++ = sample >> 8;
	  *data++ = sample >> 0;
	  *data++ = sample >> 8;
	  *data++ = sample >> 0;
          }
        break;
      case amDither:
        while (len--) {
	  sample  = LinearDither(*left++,&leftD);
	  *data++ = sample >> 8;
	  *data++ = sample >> 0;
	  *data++ = sample >> 8;
	  *data++ = sample >> 0;
          }
        break;
      }
    }
 return res;
}