1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
/*
* srfft_kni.c
*
* Copyright (C) Yuqing Deng <Yuqing_Deng@brown.edu> - April 2000
*
* 64 and 128 point split radix fft for ac3dec
*
* The algorithm is desribed in the book:
* "Computational Frameworks of the Fast Fourier Transform".
*
* The ideas and the the organization of code borrowed from djbfft written by
* D. J. Bernstein <djb@cr.py.to>. djbff can be found at
* http://cr.yp.to/djbfft.html.
*
* srfft.c is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* srfft.c is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#ifdef __i386__
#include <stdio.h>
#include "srfft_kni.h"
#include "srfftp.h"
void fft_64p_kni(complex_t *a)
{
fft_8_kni(&a[0]); fft_4_kni(&a[8]); fft_4_kni(&a[12]);
fft_asmb_kni(2, &a[0], &a[8], &delta16[0], &delta16_3[0]);
fft_8_kni(&a[16]), fft_8_kni(&a[24]);
fft_asmb_kni(4, &a[0], &a[16],&delta32[0], &delta32_3[0]);
fft_8_kni(&a[32]); fft_4_kni(&a[40]); fft_4_kni(&a[44]);
fft_asmb_kni(2, &a[32], &a[40], &delta16[0], &delta16_3[0]);
fft_8_kni(&a[48]); fft_4_kni(&a[56]); fft_4_kni(&a[60]);
fft_asmb_kni(2, &a[48], &a[56], &delta16[0], &delta16_3[0]);
fft_asmb_kni(8, &a[0], &a[32],&delta64[0], &delta64_3[0]);
}
void fft_128p_kni(complex_t *a)
{
fft_8_kni(&a[0]); fft_4_kni(&a[8]); fft_4_kni(&a[12]);
fft_asmb_kni(2, &a[0], &a[8], &delta16[0], &delta16_3[0]);
fft_8_kni(&a[16]), fft_8_kni(&a[24]);
fft_asmb_kni(4, &a[0], &a[16],&delta32[0], &delta32_3[0]);
fft_8_kni(&a[32]); fft_4_kni(&a[40]); fft_4_kni(&a[44]);
fft_asmb_kni(2, &a[32], &a[40], &delta16[0], &delta16_3[0]);
fft_8_kni(&a[48]); fft_4_kni(&a[56]); fft_4_kni(&a[60]);
fft_asmb_kni(2, &a[48], &a[56], &delta16[0], &delta16_3[0]);
fft_asmb_kni(8, &a[0], &a[32],&delta64[0], &delta64_3[0]);
fft_8_kni(&a[64]); fft_4_kni(&a[72]); fft_4_kni(&a[76]);
/* fft_16(&a[64]); */
fft_asmb_kni(2, &a[64], &a[72], &delta16[0], &delta16_3[0]);
fft_8_kni(&a[80]); fft_8_kni(&a[88]);
/* fft_32(&a[64]); */
fft_asmb_kni(4, &a[64], &a[80],&delta32[0], &delta32_3[0]);
fft_8_kni(&a[96]); fft_4_kni(&a[104]), fft_4_kni(&a[108]);
/* fft_16(&a[96]); */
fft_asmb_kni(2, &a[96], &a[104], &delta16[0], &delta16_3[0]);
fft_8_kni(&a[112]), fft_8_kni(&a[120]);
/* fft_32(&a[96]); */
fft_asmb_kni(4, &a[96], &a[112], &delta32[0], &delta32_3[0]);
/* fft_128(&a[0]); */
fft_asmb_kni(16, &a[0], &a[64], &delta128[0], &delta128_3[0]);
}
#endif
|