summaryrefslogtreecommitdiff
path: root/src/libdts/decoder.c
diff options
context:
space:
mode:
authorJames Courtier-Dutton <jcdutton@users.sourceforge.net>2003-08-05 11:30:56 +0000
committerJames Courtier-Dutton <jcdutton@users.sourceforge.net>2003-08-05 11:30:56 +0000
commite067c53a81cf4aed0ede7c7b3da85c114deca858 (patch)
treef16e1b8fec6a98d3f9df82f76b171050ef28b1b2 /src/libdts/decoder.c
parented889db8c5d8ca72b97e61d833bf1270dda05750 (diff)
downloadxine-lib-e067c53a81cf4aed0ede7c7b3da85c114deca858.tar.gz
xine-lib-e067c53a81cf4aed0ede7c7b3da85c114deca858.tar.bz2
Some more updates.
Started to enter huffman tables. General reorganisation as xine_decoder.c was getting too big. CVS patchset: 5245 CVS date: 2003/08/05 11:30:56
Diffstat (limited to 'src/libdts/decoder.c')
-rw-r--r--src/libdts/decoder.c849
1 files changed, 849 insertions, 0 deletions
diff --git a/src/libdts/decoder.c b/src/libdts/decoder.c
new file mode 100644
index 000000000..724d61927
--- /dev/null
+++ b/src/libdts/decoder.c
@@ -0,0 +1,849 @@
+/*
+ * Copyright (C) 2000-2003 the xine project
+ *
+ * This file is part of xine, a unix video player.
+ *
+ * xine is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * xine is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ *
+ * $Id: decoder.c,v 1.1 2003/08/05 11:30:56 jcdutton Exp $
+ *
+ * 04-08-2003 DTS software decode (C) James Courtier-Dutton
+ *
+ */
+
+#ifndef __sun
+/* required for swab() */
+#define _XOPEN_SOURCE 500
+#endif
+
+#include <stdlib.h>
+#include <unistd.h>
+#include <string.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <netinet/in.h> /* ntohs */
+#include <assert.h>
+
+#include "xine_internal.h"
+#include "xineutils.h"
+#include "audio_out.h"
+#include "buffer.h"
+
+#include "dts_debug.h"
+#include "decoder.h"
+#include "decoder_internal.h"
+#include "print_info.h"
+
+#ifdef ENABLE_DTS_PARSE
+
+typedef struct {
+ uint8_t *start;
+ uint32_t byte_position;
+ uint32_t bit_position;
+ uint8_t byte;
+} getbits_state_t;
+
+static float AdjTable[] = {
+ 1.0000,
+ 1.1250,
+ 1.2500,
+ 1.4375
+};
+
+#include "huffman_tables.h"
+
+static int32_t getbits_init(getbits_state_t *state, uint8_t *start) {
+ if ((state == NULL) || (start == NULL)) return -1;
+ state->start = start;
+ state->bit_position = 0;
+ state->byte_position = 0;
+ state->byte = start[0];
+ return 0;
+}
+/* Non-optimized getbits. */
+/* This can easily be optimized for particular platforms. */
+static uint32_t getbits(getbits_state_t *state, uint32_t number_of_bits) {
+ uint32_t result=0;
+ uint8_t byte=0;
+ if (number_of_bits > 32) {
+ printf("Number of bits > 32 in getbits\n");
+ assert(0);
+ }
+
+ if ((state->bit_position) > 0) { /* Last getbits left us in the middle of a byte. */
+ if (number_of_bits > (8-state->bit_position)) { /* this getbits will span 2 or more bytes. */
+ byte = state->byte;
+ byte = byte >> (state->bit_position);
+ result = byte;
+ number_of_bits -= (8-state->bit_position);
+ state->bit_position = 0;
+ state->byte_position++;
+ state->byte = state->start[state->byte_position];
+ } else {
+ byte=state->byte;
+ state->byte = state->byte << number_of_bits;
+ byte = byte >> (8 - number_of_bits);
+ result = byte;
+ state->bit_position += number_of_bits; /* Here it is impossible for bit_position > 8 */
+ if (state->bit_position == 8) {
+ state->bit_position = 0;
+ state->byte_position++;
+ state->byte = state->start[state->byte_position];
+ }
+ number_of_bits = 0;
+ }
+ }
+ if ((state->bit_position) == 0)
+ while (number_of_bits > 7) {
+ result = (result << 8) + state->byte;
+ state->byte_position++;
+ state->byte = state->start[state->byte_position];
+ number_of_bits -= 8;
+ }
+ if (number_of_bits > 0) { /* number_of_bits < 8 */
+ byte = state->byte;
+ state->byte = state->byte << number_of_bits;
+ state->bit_position += number_of_bits; /* Here it is impossible for bit_position > 7 */
+ if (state->bit_position > 7) printf ("bit_pos2 too large: %d\n",state->bit_position);
+ byte = byte >> (8 - number_of_bits);
+ result = (result << number_of_bits) + byte;
+ number_of_bits = 0;
+ }
+
+ return result;
+}
+
+static int32_t huff_lookup(getbits_state_t *state, int32_t HuffTable[][2] ) {
+ int32_t n=1;
+ int32_t bit;
+
+ {
+ bit = getbits(state, 1);
+ n = HuffTable[n][bit];
+ } while (n > 0);
+ /* printf("returning %d\n", n + HuffTable[0][0]); */
+ return n + HuffTable[0][0];
+}
+
+
+static int32_t qscales(int32_t nQSelect, getbits_state_t *state, int32_t *nScale) {
+/* FIXME: IMPLEMENT */
+return 0;
+}
+
+/* Used by dts.wav files, only 14 bits of the 16 possible are used in the CD. */
+static void squash14to16(uint8_t *buf_from, uint8_t *buf_to, uint32_t number_of_bytes) {
+ int32_t from;
+ int32_t to=0;
+ uint16_t sample1;
+ uint16_t sample2;
+ uint16_t sample3;
+ uint16_t sample4;
+ uint16_t sample16bit;
+ /* This should convert the 14bit sync word into a 16bit one. */
+ printf("libdts: squashing %d bytes.\n", number_of_bytes);
+ for(from=0;from<number_of_bytes;from+=8) {
+ sample1 = buf_from[from+0] | buf_from[from+1] << 8;
+ sample1 = (sample1 & 0x1fff) | ((sample1 & 0x8000) >> 2);
+ sample2 = buf_from[from+2] | buf_from[from+3] << 8;
+ sample2 = (sample2 & 0x1fff) | ((sample2 & 0x8000) >> 2);
+ sample16bit = (sample1 << 2) | (sample2 >> 12);
+ buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
+ buf_to[to++] = sample16bit & 0xff;
+ sample3 = buf_from[from+4] | buf_from[from+5] << 8;
+ sample3 = (sample3 & 0x1fff) | ((sample3 & 0x8000) >> 2);
+ sample16bit = ((sample2 & 0xfff) << 4) | (sample3 >> 10);
+ buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
+ buf_to[to++] = sample16bit & 0xff;
+ sample4 = buf_from[from+6] | buf_from[from+7] << 8;
+ sample4 = (sample4 & 0x1fff) | ((sample4 & 0x8000) >> 2);
+ sample16bit = ((sample3 & 0x3ff) << 6) | (sample4 >> 8);
+ buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
+ buf_to[to++] = sample16bit & 0xff;
+ buf_to[to++] = sample4 & 0xff;
+ }
+
+}
+
+#if 0
+/* FIXME: Make this re-entrant */
+static void InverseADPCM(void) {
+/*
+ * NumADPCMCoeff =4, the number of ADPCM coefficients.
+ * raADPCMcoeff[] are the ADPCM coefficients extracted
+ * from the bit stream.
+ * raSample[NumADPCMCoeff], ..., raSample[-1] are the
+ * history from last subframe or subsubframe. It must
+ * updated each time before reverse ADPCM is run for a
+ * block of samples for each subband.
+ */
+for (m=0; m<nNumSample; m++)
+for (n=0; n<NumADPCMCoeff; n++)
+raSample[m] += raADPCMcoeff[n]*raSample[m-n-1];
+}
+#endif
+
+
+void dts_parse_data (dts_decoder_t *this, buf_element_t *buf) {
+ uint8_t *data_in = (uint8_t *)buf->content;
+ getbits_state_t state;
+ decoder_data_t decoder_data;
+ decoder_data.sync_type=0;
+ decoder_data.header_crc_check_bytes=0;
+
+ int32_t n, ch, i;
+ printf("libdts: buf->size = %d\n", buf->size);
+ printf("libdts: parse1: ");
+ for(i=0;i<16;i++) {
+ printf("%02x ",data_in[i]);
+ }
+ printf("\n");
+
+ if ((data_in[0] == 0x7f) &&
+ (data_in[1] == 0xfe) &&
+ (data_in[2] == 0x80) &&
+ (data_in[3] == 0x01)) {
+ decoder_data.sync_type=1;
+ }
+ if (data_in[0] == 0xff &&
+ data_in[1] == 0x1f &&
+ data_in[2] == 0x00 &&
+ data_in[3] == 0xe8 &&
+ data_in[4] == 0xf1 && /* DTS standard document was wrong here! */
+ data_in[5] == 0x07 ) { /* DTS standard document was wrong here! */
+ squash14to16(&data_in[0], &data_in[0], buf->size);
+ buf->size = buf->size - (buf->size / 8); /* size = size * 7 / 8; */
+ decoder_data.sync_type=2;
+ }
+ if (decoder_data.sync_type == 0) {
+ printf("libdts: DTS Sync bad\n");
+ return;
+ }
+ printf("libdts: DTS Sync OK. type=%d\n", decoder_data.sync_type);
+ printf("libdts: parse2: ");
+ for(i=0;i<16;i++) {
+ printf("%02x ",data_in[i]);
+ }
+ printf("\n");
+
+ getbits_init(&state, &data_in[4]);
+
+ /* B.2 Unpack Frame Header Routine */
+ /* Frame Type V FTYPE 1 bit */
+ decoder_data.frame_type = getbits(&state, 1); /* 1: Normal Frame, 2:Termination Frame */
+ /* Deficit Sample Count V SHORT 5 bits */
+ decoder_data.deficit_sample_count = getbits(&state, 5);
+ /* CRC Present Flag V CPF 1 bit */
+ decoder_data.crc_present_flag = getbits(&state, 1);
+ /* Number of PCM Sample Blocks V NBLKS 7 bits */
+ decoder_data.number_of_pcm_blocks = getbits(&state, 7);
+ /* Primary Frame Byte Size V FSIZE 14 bits */
+ decoder_data.primary_frame_byte_size = getbits(&state, 14);
+ /* Audio Channel Arrangement ACC AMODE 6 bits */
+ decoder_data.audio_channel_arrangement = getbits(&state, 6);
+ /* Core Audio Sampling Frequency ACC SFREQ 4 bits */
+ decoder_data.core_audio_sampling_frequency = getbits(&state, 4);
+ /* Transmission Bit Rate ACC RATE 5 bits */
+ decoder_data.transmission_bit_rate = getbits(&state, 5);
+ /* Embedded Down Mix Enabled V MIX 1 bit */
+ decoder_data.embedded_down_mix_enabled = getbits(&state, 1);
+ /* Embedded Dynamic Range Flag V DYNF 1 bit */
+ decoder_data.embedded_dynamic_range_flag = getbits(&state, 1);
+ /* Embedded Time Stamp Flag V TIMEF 1 bit */
+ decoder_data.embedded_time_stamp_flag = getbits(&state, 1);
+ /* Auxiliary Data Flag V AUXF 1 bit */
+ decoder_data.auxiliary_data_flag = getbits(&state, 1);
+ /* HDCD NV HDCD 1 bits */
+ decoder_data.hdcd = getbits(&state, 1);
+ /* Extension Audio Descriptor Flag ACC EXT_AUDIO_ID 3 bits */
+ decoder_data.extension_audio_descriptor_flag = getbits(&state, 3);
+ /* Extended Coding Flag ACC EXT_AUDIO 1 bit */
+ decoder_data.extended_coding_flag = getbits(&state, 1);
+ /* Audio Sync Word Insertion Flag ACC ASPF 1 bit */
+ decoder_data.audio_sync_word_insertion_flag = getbits(&state, 1);
+ /* Low Frequency Effects Flag V LFF 2 bits */
+ decoder_data.low_frequency_effects_flag = getbits(&state, 2);
+ /* Predictor History Flag Switch V HFLAG 1 bit */
+ decoder_data.predictor_history_flag_switch = getbits(&state, 1);
+ /* Header CRC Check Bytes V HCRC 16 bits */
+ if (decoder_data.crc_present_flag == 1)
+ decoder_data.header_crc_check_bytes = getbits(&state, 16);
+ /* Multirate Interpolator Switch NV FILTS 1 bit */
+ decoder_data.multirate_interpolator_switch = getbits(&state, 1);
+ /* Encoder Software Revision ACC/NV VERNUM 4 bits */
+ decoder_data.encoder_software_revision = getbits(&state, 4);
+ /* Copy History NV CHIST 2 bits */
+ decoder_data.copy_history = getbits(&state, 2);
+ /* Source PCM Resolution ACC/NV PCMR 3 bits */
+ decoder_data.source_pcm_resolution = getbits(&state, 3);
+ /* Front Sum/Difference Flag V SUMF 1 bit */
+ decoder_data.front_sum_difference_flag = getbits(&state, 1);
+ /* Surrounds Sum/Difference Flag V SUMS 1 bit */
+ decoder_data.surrounds_sum_difference_flag = getbits(&state, 1);
+ /* Dialog Normalisation Parameter/Unspecified V DIALNORM/UNSPEC 4 bits */
+ switch (decoder_data.encoder_software_revision) {
+ case 6:
+ decoder_data.dialog_normalisation_unspecified = 0;
+ decoder_data.dialog_normalisation_parameter = getbits(&state, 4);
+ decoder_data.dialog_normalisation_gain = - (16+decoder_data.dialog_normalisation_parameter);
+ break;
+ case 7:
+ decoder_data.dialog_normalisation_unspecified = 0;
+ decoder_data.dialog_normalisation_parameter = getbits(&state, 4);
+ decoder_data.dialog_normalisation_gain = - (decoder_data.dialog_normalisation_parameter);
+ break;
+ default:
+ decoder_data.dialog_normalisation_unspecified = getbits(&state, 4);
+ decoder_data.dialog_normalisation_gain = decoder_data.dialog_normalisation_parameter = 0;
+ break;
+ }
+
+ /* B.3 Audio Decoding */
+ /* B.3.1 Primary Audio Coding Header */
+
+ /* Number of Subframes V SUBFS 4 bits */
+ decoder_data.number_of_subframes = getbits(&state, 4) + 1 ;
+ /* Number of Primary Audio Channels V PCHS 3 bits */
+ decoder_data.number_of_primary_audio_channels = getbits(&state, 3) + 1 ;
+ /* Subband Activity Count V SUBS 5 bits per channel */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ decoder_data.subband_activity_count[ch] = getbits(&state, 5) + 2 ;
+ }
+ /* High Frequency VQ Start Subband V VQSUB 5 bits per channel */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ decoder_data.high_frequency_VQ_start_subband[ch] = getbits(&state, 5) + 1 ;
+ }
+ /* Joint Intensity Coding Index V JOINX 3 bits per channel */
+ for (n=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ decoder_data.joint_intensity_coding_index[ch] = getbits(&state, 3) ;
+ }
+ /* Transient Mode Code Book V THUFF 2 bits per channel */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ decoder_data.transient_mode_code_book[ch] = getbits(&state, 2) ;
+ }
+ /* Scale Factor Code Book V SHUFF 3 bits per channel */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ decoder_data.scales_factor_code_book[ch] = getbits(&state, 3) ;
+ }
+ /* Bit Allocation Quantizer Select BHUFF V 3 bits per channel */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ decoder_data.bit_allocation_quantizer_select[ch] = getbits(&state, 3) ;
+ }
+ /* Quantization Index Codebook Select V SEL variable bits */
+ /* ABITS=1: */
+ n=0;
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++)
+ decoder_data.quantization_index_codebook_select[ch][n] = getbits(&state, 1);
+ /* ABITS = 2 to 5: */
+ for (n=1; n<5; n++)
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++)
+ decoder_data.quantization_index_codebook_select[ch][n] = getbits(&state, 2);
+ /* ABITS = 6 to 10: */
+ for (n=5; n<10; n++)
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++)
+ decoder_data.quantization_index_codebook_select[ch][n] = getbits(&state, 3);
+ /* ABITS = 11 to 26: */
+ for (n=10; n<26; n++)
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++)
+ decoder_data.quantization_index_codebook_select[ch][n] = 0; /* Not transmitted, set to zero. */
+
+ /* Scale Factor Adjustment Index V ADJ 2 bits per occasion */
+ /* ABITS = 1: */
+ n = 0;
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ int32_t adj;
+ if ( decoder_data.quantization_index_codebook_select[ch][n] == 0 ) { /* Transmitted only if quantization_index_codebook_select=0 (Huffman code used) */
+ /* Extract ADJ index */
+ adj = getbits(&state, 2);
+ /* Look up ADJ table */
+ decoder_data.scale_factor_adjustment_index[ch][n] = AdjTable[adj];
+ }
+ }
+ /* ABITS = 2 to 5: */
+ for (n=1; n<5; n++){
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++){
+ int32_t adj;
+ if ( decoder_data.quantization_index_codebook_select[ch][n] < 3 ) { /* Transmitted only when quantization_index_codebook_select<3 */
+ /* Extract ADJ index */
+ adj = getbits(&state, 2);
+ /* Look up ADJ table */
+ decoder_data.scale_factor_adjustment_index[ch][n] = AdjTable[adj];
+ }
+ }
+ }
+ /* ABITS = 6 to 10: */
+ for (n=5; n<10; n++){
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++){
+ int32_t adj;
+ if ( decoder_data.quantization_index_codebook_select[ch][n] < 7 ) { /* Transmitted only when quantization_index_codebook_select<7 */
+ /* Extract ADJ index */
+ adj = getbits(&state, 2);
+ /* Look up ADJ table */
+ decoder_data.scale_factor_adjustment_index[ch][n] = AdjTable[adj];
+ }
+ }
+ }
+
+ if (decoder_data.crc_present_flag == 1) { /* Present only if CPF=1. */
+ decoder_data.audio_header_crc_check_word = getbits(&state, 16);
+ }
+
+/* B.3.2 Unpack Subframes */
+/* B.3.2.1 Primary Audio Coding Side Information */
+
+/* Subsubframe Count V SSC 2 bit */
+ decoder_data.subsubframe_count = getbits(&state, 2) + 1;
+/* Partial Subsubframe Sample Count V PSC 3 bit */
+ decoder_data.partial_subsubframe_sample_count = getbits(&state, 3);
+/* Prediction Mode V PMODE 1 bit per subband */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ for (n=0; n<decoder_data.subband_activity_count[ch]; n++) {
+ decoder_data.prediction_mode[ch][n] = getbits(&state, 1);
+ }
+ }
+
+/* Prediction Coefficients VQ Address V PVQ 12 bits per occurrence */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ for (n=0; n<decoder_data.subband_activity_count[ch]; n++) {
+ decoder_data.PVQIndex[ch][n] = 0;
+ if ( decoder_data.prediction_mode[ch][n]>0 ) { /* Transmitted only when ADPCM active */
+ /* Extract the VQindex */
+ decoder_data.nVQIndex = getbits(&state,12);
+ /* Look up the VQ table for prediction coefficients. */
+ /* FIXME: How to implement LookUp? */
+ decoder_data.PVQIndex[ch][n] = decoder_data.nVQIndex;
+ /* FIXME: We don't have the ADPCMCoeff table. */
+ /* ADPCMCoeffVQ.LookUp(nVQIndex, PVQ[ch][n]);*/ /* 4 coefficients FIXME: Need to work out what this does. */
+ }
+ }
+ }
+
+
+ /* Bit Allocation Index V ABITS variable bits */
+ /* FIXME: No getbits here InverseQ does the getbits */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ /* Bit Allocation Quantizer Select tells which codebook was used */
+ decoder_data.nQSelect = decoder_data.bit_allocation_quantizer_select[ch];
+ /* Use this codebook to decode the bit stream for bit_allocation_index[ch][n] */
+ for (n=0; n<decoder_data.high_frequency_VQ_start_subband[ch]; n++) {
+ /* Not for VQ encoded subbands. */
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ /* This basically selects a huffman table number nQSelect, */
+ /* and uses it to read a variable amount of bits and does a huffman search to find the value. */
+ /* FIXME: Need to implement InverseQ, so we can uncomment this line */
+ if (decoder_data.nQSelect == 6) {
+ decoder_data.bit_allocation_index[ch][n] = getbits(&state,5);
+ } else {
+ XINE_ASSERT(0, "bit_alloc parse failed, (nQSelect != 6) not implemented yet.");
+ }
+
+ /*QABITS.ppQ[nQSelect]->InverseQ(&state, bit_allocation_index[ch][n]); */
+ }
+ }
+
+ /* Transition Mode V TMODE variable bits */
+
+ /* Always assume no transition unless told */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++){
+ for (n=0; n<decoder_data.subband_activity_count[ch]; n++) {
+ decoder_data.transition_mode[ch][n] = 0;
+ }
+ /* Decode transition_mode[ch][n] */
+ if ( decoder_data.subsubframe_count>1 ) {
+ /* Transient possible only if more than one subsubframe. */
+ for (ch=0; ch<decoder_data.number_of_primary_audio_channels; ch++) {
+ /* transition_mode[ch][n] is encoded by a codebook indexed by transient_mode_code_book[ch] */
+ decoder_data.nQSelect = decoder_data.transient_mode_code_book[ch];
+ for (n=0; n<decoder_data.high_frequency_VQ_start_subband[ch]; n++) {
+ /* No VQ encoded subbands */
+ if ( decoder_data.bit_allocation_index[ch][n] >0 ) {
+ /* Present only if bits allocated */
+ /* Use codebook nQSelect to decode transition_mode from the bit stream */
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ if (decoder_data.nQSelect == 0) {
+ decoder_data.transition_mode[ch][n] = huff_lookup(&state, HuffA4);
+ } else {
+ XINE_ASSERT(0, "transition mod parse failed, (nQSelect != 0) not implemented yet.");
+ }
+
+ /* QTMODE.ppQ[nQSelect]->InverseQ(&state,transition_mode[ch][n]); */
+ } else {
+ decoder_data.transition_mode[ch][n] = 0;
+ }
+ }
+ }
+ }
+ }
+
+/* WORKING ON THIS BIT */
+
+
+#if 0
+ /* Scale Factors V SCALES variable bits */
+ for (ch=0; ch<number_of_primary_audio_channels; ch++) {
+ /* Clear scale_factors */
+ for (n=0; n<subband_activity_count[ch]; n++) {
+ scale_factors[ch][n][0] = 0;
+ scale_factors[ch][n][1] = 0;
+ }
+ /* scales_factor_code_book indicates which codebook was used to encode scale_factors */
+ nQSelect = scales_factor_code_book[ch];
+ /* Select the root square table (scale_factors were nonlinearly */
+ /* quantized). */
+ /* Assume nQSelect != 6 */
+ /* So RMS is always 6 bit. */
+ if ( nQSelect == 6 ) {
+ /* pScaleTable = &RMS7Bit;*/ /* 7-bit root square table */
+ } else {
+ /* pScaleTable = &RMS6Bit;*/ /* 6-bit root square table */
+ }
+ /*
+ * Clear accumulation (if Huffman code was used, the difference
+ * of scale_factors was encoded).
+ */
+ nScaleSum = 0;
+ /*
+ * Extract scale_factors for Subbands up to high_frequency_VQ_start_subband[ch]
+ */
+ for (n=0; n<high_frequency_VQ_start_subband[ch]; n++) {
+ if ( bit_allocation_index[ch][n] >0 ) { /* Not present if no bit allocated */
+ /*
+ * First scale factor
+ */
+ /* Use the (Huffman) code indicated by nQSelect to decode */
+ /* the quantization index of scale_factors from the bit stream */
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ qscales(nQSelect, &state, &nScale);
+ /* QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale); */
+ /* Take care of difference encoding */
+ if ( nQSelect < 5 ) { /* Huffman encoded, nScale is the difference */
+ nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
+ } else { /* Otherwise, nScale is the quantization */
+ nScaleSum = nScale; /* level of scale_factors. */
+ }
+ /* Look up scale_factors from the root square table */
+ /* FIXME: How to implement LookUp? */
+ pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][0])
+ /*
+ * Two scale factors transmitted if there is a transient
+ */
+ if (transition_mode[ch][n]>0) {
+ /* Use the (Huffman) code indicated by nQSelect to decode */
+ /* the quantization index of scale_factors from the bit stream */
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
+ /* Take care of difference encoding */
+ if ( nQSelect < 5 ) /* Huffman encoded, nScale is the difference */
+ nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
+ else /* Otherwise, nScale is the quantization */
+ nScaleSum = nScale; /* level of scale_factors. */
+ /* Look up scale_factors from the root square table */
+ /* FIXME: How to implement LookUp? */
+ pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][1]);
+ }
+ }
+ }
+ /*
+ * High frequency VQ subbands
+ */
+ for (n=high_frequency_VQ_start_subband[ch]; n<subband_activity_count[ch]; n++) {
+ /* Use the code book indicated by nQSelect to decode */
+ /* the quantization index of scale_factors from the bit stream */
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
+ /* Take care of difference encoding */
+ if ( nQSelect < 5 ) /* Huffman encoded, nScale is the difference */
+ nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
+ else /* Otherwise, nScale is the quantization */
+ nScaleSum = nScale; /* level of scale_factors. */
+ /* Look up scale_factors from the root square table */
+ /* FIXME: How to implement LookUp? */
+ pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][0])
+ }
+ }
+
+/* #if 0 */
+/* FIXME: ALL CODE BELOW HERE does not compile yet. */
+
+
+ /* Joint Subband Scale Factor Codebook Select V JOIN SHUFF 3 bits per channel */
+ for (ch=0; ch<number_of_primary_audio_channels; ch++)
+ if (joint_intensity_coding_index[ch]>0 ) /* Transmitted only if joint subband coding enabled. */
+ joint_subband_scale_factor_codebook_select[ch] = getbits(&state,3);
+
+ /* Scale Factors for Joint Subband Coding V JOIN SCALES variable bits */
+ int nSourceCh;
+ for (ch=0; ch<number_of_primary_audio_channels; ch++) {
+ if (joint_intensity_coding_index[ch]>0 ) { /* Only if joint subband coding enabled. */
+ nSourceCh = joint_intensity_coding_index[ch]-1; /* Get source channel. joint_intensity_coding_index counts */
+ /* channels as 1,2,3,4,5, so minus 1. */
+ nQSelect = joint_subband_scale_factor_codebook_select[ch]; /* Select code book. */
+ for (n=subband_activity_count[ch]; n<subband_activity_count[nSourceCh]; n++) {
+ /* Use the code book indicated by nQSelect to decode */
+ /* the quantization index of scale_factors_for_joint_subband_coding */
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nJScale);
+ /* Bias by 64 */
+ nJScale = nJScale + 64;
+ /* Look up scale_factors_for_joint_subband_coding from the joint scale table */
+ /* FIXME: How to implement LookUp? */
+ JScaleTbl.LookUp(nJScale, scale_factors_for_joint_subband_coding[ch][n]);
+ }
+ }
+ }
+
+ /* Stereo Down-Mix Coefficients NV DOWN 7 bits per coefficient */
+ if ( (MIX!=0) && (number_of_primary_audio_channels>2) ) {
+ /* Extract down mix indexes */
+ for (ch=0; ch<number_of_primary_audio_channels; ch++) { /* Each primary channel */
+ stereo_down_mix_coefficients[ch][0] = getbits(&state,7);
+ stereo_down_mix_coefficients[ch][1] = getbits(&state,7);
+ }
+ }
+ /* Look up down mix coefficients */
+ for (n=0; n<subband_activity_count; n++) { /* Each active subbands */
+ LeftChannel = 0;
+ RightChannel = 0;
+ for (ch=0; ch<number_of_primary_audio_channels; ch++) { /* Each primary channels */
+ LeftChannel += stereo_down_mix_coefficients[ch][0]*Sample[Ch];
+ RightChannel += stereo_down_mix_coefficients[ch][1]*Sample[Ch];
+ }
+ }
+ /* Down mixing may also be performed on the PCM samples after the filterbank reconstruction. */
+
+ /* Dynamic Range Coefficient NV RANGE 8 bits */
+ if ( embedded_dynamic_range_flag != 0 ) {
+ nIndex = getbits(&state,8);
+ /* FIXME: How to implement LookUp? */
+ RANGEtbl.LookUp(nIndex,dynamic_range_coefficient);
+ /* The following range adjustment is to be performed */
+ /* after QMF reconstruction */
+ for (ch=0; ch<number_of_primary_audio_channels; ch++)
+ for (n=0; n<nNumSamples; n++)
+ AudioCh[ch].ReconstructedSamples[n] *= dynamic_range_coefficient;
+ }
+
+ /* Side Information CRC Check Word V SICRC 16 bits */
+ if ( CPF==1 ) /* Present only if CPF=1. */
+ SICRC = getbits(&state,16);
+
+ /* B.3.3 Primary Audio Data Arrays */
+
+ /* VQ Encoded High Frequency Subbands NV HFREQ 10 bits per applicable subbands */
+ for (ch=0; ch<number_of_primary_audio_channels; ch++) {
+ for (n=high_frequency_VQ_start_subband[ch]; n<subband_activity_count[ch]; n++) {
+ /* Extract the VQ address from the bit stream */
+ nVQIndex = getbits(&state,10);
+ /* Look up the VQ code book for 32 subband samples. */
+ /* FIXME: How to implement LookUp? */
+ HFreqVQ.LookUp(nVQIndex, VQ_encoded_high_frequency_subbands[ch][n])
+ /* Scale and take the samples */
+ Scale = (real)scale_factors[ch][n][0]; /* Get the scale factor */
+ for (m=0; m<subsubframe_count*8; m++, nSample++) {
+ aPrmCh[ch].aSubband[n].raSample[m] = rScale*VQ_encoded_high_frequency_subbands[ch][n][m];
+ }
+ }
+ }
+
+ /* Low Frequency Effect Data V LFE 8 bits per sample */
+ if ( low_frequency_effects_flag>0 ) { /* Present only if flagged by low_frequency_effects_flag */
+ /* extract low_frequency_effect_data samples from the bit stream */
+ for (n=0; n<2*low_frequency_effects_flag*subsubframe_count; n++) {
+ low_frequency_effect_data[n] = (signed int)(signed char)getbits(&state,8);
+ /* Use char to get sign extension because it */
+ /* is 8-bit 2's compliment. */
+ /* Extract scale factor index from the bit stream */
+ }
+ LFEscaleIndex = getbits(&state,8);
+ /* Look up the 7-bit root square quantization table */
+ /* FIXME: How to implement LookUp? */
+ pLFE_RMS->LookUp(LFEscaleIndex,nScale);
+ /* Account for the quantizer step size which is 0.035 */
+ rScale = nScale*0.035;
+ /* Get the actual low_frequency_effect_data samples */
+ for (n=0; n<2*low_frequency_effects_flag*subsubframe_count; n++) {
+ LFECh.rLFE[k] = low_frequency_effect_data[n]*rScale;
+ }
+ /* Interpolation low_frequency_effect_data samples */
+ LFECh.InterpolationFIR(low_frequency_effects_flag); /* low_frequency_effects_flag indicates which */
+ /* interpolation filter to use */
+ }
+
+ /* Audio Data V AUDIO variable bits */
+ /*
+ * Select quantization step size table
+ */
+ if ( RATE == 0x1f ) {
+ pStepSizeTable = &StepSizeLossLess; /* Lossless quantization */
+ } else {
+ pStepSizeTable = &StepSizeLossy; /* Lossy */
+ }
+ /*
+ * Unpack the subband samples
+ */
+ for (nSubSubFrame=0; nSubSubFrame<subsubframe_count; nSubSubFrame++) {
+ for (ch=0; ch<number_of_primary_audio_channels; ch++) {
+ for (n=0; n<high_frequency_VQ_start_subband[ch]; n++) { /* Not high frequency VQ subbands */
+ /*
+ * Select the mid-tread linear quantizer
+ */
+ nABITS = bit_allocation_index[ch][n]; /* Select the mid-tread quantizer */
+ pCQGroup = &pCQGroupAUDIO[nABITS-1];/* Select the group of */
+ /* code books corresponding to the */
+ /* the mid-tread linear quantizer. */
+ nNumQ = pCQGroupAUDIO[nABITS-1].nNumQ-1;/* Number of code */
+ /* books in this group */
+ /*
+ * Determine quantization index code book and its type
+ */
+ /* Select quantization index code book */
+ nSEL = quantization_index_codebook_select[ch][nABITS-1];
+ /* Determine its type */
+ nQType = 1; /* Assume Huffman type by default */
+ if ( nSEL==nNumQ ) { /* Not Huffman type */
+ if ( nABITS<=7 ) {
+ nQType = 3; /* Block code */
+ } else {
+ nQType = 2; /* No further encoding */
+ }
+ }
+ if ( nABITS==0 ) { /* No bits allocated */
+ nQType = 0;
+ }
+ /*
+ * Extract bits from the bit stream
+ * This retrieves 8 AUDIO values
+ */
+ switch ( nQType ) {
+ case 0: /* No bits allocated */
+ for (m=0; m<8; m++)
+ AUDIO[m] = 0;
+ break;
+ case 1: /* Huffman code */
+ for (m=0; m<8; m++)
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ pCQGroup->ppQ[nSEL]->InverseQ(InputFrame,AUDIO[m]);
+ break;
+ case 2: /* No further encoding */
+ for (m=0; m<8; m++) {
+ /* Extract quantization index from the bit stream */
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
+ /* Take care of 2's compliment */
+ AUDIO[m] = pCQGroup->ppQ[nSEL]->SignExtension(nCode);
+ }
+ break;
+ case 3: /* Block code */
+ /* Block code is just 1 value with 4 samples derived from it.
+ * with each sample a digit from the number (using a base derived from nABITS via a table)
+ * E.g. nABITS = 10, base = 5 (Base value taken from table.)
+ * 1st sample = (value % 5) - (int(5/2); (Values between -2 and +2 )
+ * 2st sample = ((value / 5) % 5) - (int(5/2);
+ * 3rd sample = ((value / 25) % 5) - (int(5/2);
+ * 4th sample = ((value / 125) % 5) - (int(5/2);
+ *
+ */
+ pCBQ = &pCBlockQ[nABITS-1]; /* Select block code book */
+ m = 0;
+ for (nBlock=0; nBlock<2; nBlock++) {
+ /* Extract the block code index from the bit stream */
+ /* FIXME: What is Inverse Quantization(InverseQ) ? */
+ pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
+ /* Look up 4 samples from the block code book */
+ /* FIXME: How to implement LookUp? */
+ pCBQ->LookUp(nCode,&AUDIO[m])
+ m += 4;
+ }
+ break;
+ default: /* Undefined */
+ printf("ERROR: Unknown AUDIO quantization index code book.");
+ }
+ /*
+ * Account for quantization step size and scale factor
+ */
+ /* Look up quantization step size */
+ nABITS = bit_allocation_index[ch][n];
+ /* FIXME: How to implement LookUp? */
+ pStepSizeTable->LookUp(nABITS, rStepSize);
+ /* Identify transient location */
+ nTmode = transition_mode[ch][n];
+ if ( nTmode == 0 ) /* No transient */
+ nTmode = subsubframe_count;
+ /* Determine proper scale factor */
+ if (nSubSubFrame<nTmode) /* Pre-transient */
+ rScale = rStepSize * scale_factors[ch][n][0]; /* Use first scale factor */
+ else /* After-transient */
+ rScale = rStepSize * scale_factors[ch][n][1]; /* Use second scale factor */
+ /* Adjustmemt of scale factor */
+ rScale *= scale_factor_adjustment_index[ch][quantization_index_codebook_select[ch][nABITS-1]]; /* scale_factor_adjustment_index[ ][ ] are assumed 1 */
+ /* unless changed by bit */
+ /* stream when quantization_index_codebook_select indicates */
+ /* Huffman code. */
+ /* Scale the samples */
+ nSample = 8*nSubSubFrame; /* Set sample index */
+ for (m=0; m<8; m++, nSample++)
+ aPrmCh[ch].aSubband[n].aSample[nSample] = rScale*AUDIO[m];
+ /*
+ * Inverse ADPCM
+ */
+ if ( PMODE[ch][n] != 0 ) /* Only when prediction mode is on. */
+ aPrmCh[ch].aSubband[n].InverseADPCM();
+ /*
+ * Check for DSYNC
+ */
+ if ( (nSubSubFrame==(subsubframe_count-1)) || (ASPF==1) ) {
+ DSYNC = getbits(&state,16);
+ if ( DSYNC != 0xffff )
+ printf("DSYNC error at end of subsubframe #%d", nSubSubFrame);
+ }
+ }
+ }
+/* B.3.4 Unpack Optional Information */
+/* TODO ^^^ */
+
+#endif
+/* CODE BELOW here does compile */
+
+ printf("getbits status: byte_pos = %d, bit_pos = %d\n",
+ state.byte_position,
+ state.bit_position);
+#if 0
+ for(n=0;n<2016;n++) {
+ if((n % 32) == 0) printf("\n");
+ printf("%02X ",state.start[state.byte_position+n]);
+ }
+ printf("\n");
+#endif
+
+#if 0
+ if ((extension_audio_descriptor_flag == 0)
+ || (extension_audio_descriptor_flag == 3)) {
+ printf("libdts:trying extension...\n");
+ channel_extension_sync_word = getbits(&state, 32);
+ extension_primary_frame_byte_size = getbits(&state, 10);
+ extension_channel_arrangement = getbits(&state, 4);
+ }
+#endif
+
+#if 0
+ extension_sync_word_SYNC96 = getbits(&state, 32);
+ extension_frame_byte_data_size_FSIZE96 = getbits(&state, 12);
+ revision_number = getbits(&state, 4);
+#endif
+dts_print_decoded_data(&decoder_data);
+}
+
+#endif