summaryrefslogtreecommitdiff
path: root/src/input/sha1.c
blob: b70e50d5fde6910ef678623e405eb49df7ad9a9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/* (PD) 2001 The Bitzi Corporation
 * Please see file COPYING or http://bitzi.com/publicdomain 
 * for more info.
 *
 * NIST Secure Hash Algorithm 
 * heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> 
 * from Peter C. Gutmann's implementation as found in 
 * Applied Cryptography by Bruce Schneier 
 * Further modifications to include the "UNRAVEL" stuff, below 
 *
 * This code is in the public domain 
 */

#include <string.h>
#include "sha1.h"

/* UNRAVEL should be fastest & biggest */
/* UNROLL_LOOPS should be just as big, but slightly slower */
/* both undefined should be smallest and slowest */

#define UNRAVEL
/* #define UNROLL_LOOPS */

/* SHA f()-functions */

#define f1(x,y,z)	((x & y) | (~x & z))
#define f2(x,y,z)	(x ^ y ^ z)
#define f3(x,y,z)	((x & y) | (x & z) | (y & z))
#define f4(x,y,z)	(x ^ y ^ z)

/* SHA constants */

#define CONST1		0x5a827999L
#define CONST2		0x6ed9eba1L
#define CONST3		0x8f1bbcdcL
#define CONST4		0xca62c1d6L

/* truncate to 32 bits -- should be a null op on 32-bit machines */

#define T32(x)	((x) & 0xffffffffL)

/* 32-bit rotate */

#define R32(x,n)	T32(((x << n) | (x >> (32 - n))))

/* the generic case, for when the overall rotation is not unraveled */

#define FG(n)	\
    T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n);	\
    E = D; D = C; C = R32(B,30); B = A; A = T

/* specific cases, for when the overall rotation is unraveled */

#define FA(n)	\
    T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30)

#define FB(n)	\
    E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30)

#define FC(n)	\
    D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30)

#define FD(n)	\
    C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30)

#define FE(n)	\
    B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30)

#define FT(n)	\
    A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30)

/* do SHA transformation */

static void sha_transform(SHA_INFO *sha_info)
{
    int i;
    SHA_BYTE *dp;
    SHA_LONG T, A, B, C, D, E, W[80], *WP;

    dp = sha_info->data;

/*
the following makes sure that at least one code block below is
traversed or an error is reported, without the necessity for nested
preprocessor if/else/endif blocks, which are a great pain in the
nether regions of the anatomy...
*/
#undef SWAP_DONE

#if (SHA_BYTE_ORDER == 1234)
#define SWAP_DONE
    for (i = 0; i < 16; ++i) {
	T = *((SHA_LONG *) dp);
	dp += 4;
	W[i] =  ((T << 24) & 0xff000000) | ((T <<  8) & 0x00ff0000) |
		((T >>  8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
    }
#endif /* SHA_BYTE_ORDER == 1234 */

#if (SHA_BYTE_ORDER == 4321)
#define SWAP_DONE
    for (i = 0; i < 16; ++i) {
	T = *((SHA_LONG *) dp);
	dp += 4;
	W[i] = T32(T);
    }
#endif /* SHA_BYTE_ORDER == 4321 */

#if (SHA_BYTE_ORDER == 12345678)
#define SWAP_DONE
    for (i = 0; i < 16; i += 2) {
	T = *((SHA_LONG *) dp);
	dp += 8;
	W[i] =  ((T << 24) & 0xff000000) | ((T <<  8) & 0x00ff0000) |
		((T >>  8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
	T >>= 32;
	W[i+1] = ((T << 24) & 0xff000000) | ((T <<  8) & 0x00ff0000) |
		 ((T >>  8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
    }
#endif /* SHA_BYTE_ORDER == 12345678 */

#if (SHA_BYTE_ORDER == 87654321)
#define SWAP_DONE
    for (i = 0; i < 16; i += 2) {
	T = *((SHA_LONG *) dp);
	dp += 8;
	W[i] = T32(T >> 32);
	W[i+1] = T32(T);
    }
#endif /* SHA_BYTE_ORDER == 87654321 */

#ifndef SWAP_DONE
#error Unknown byte order -- you need to add code here
#endif /* SWAP_DONE */

    for (i = 16; i < 80; ++i) {
	W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
#if (SHA_VERSION == 1)
	W[i] = R32(W[i], 1);
#endif /* SHA_VERSION */
    }
    A = sha_info->digest[0];
    B = sha_info->digest[1];
    C = sha_info->digest[2];
    D = sha_info->digest[3];
    E = sha_info->digest[4];
    WP = W;
#ifdef UNRAVEL
    FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
    FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
    FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
    FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
    FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
    FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
    FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
    FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
    sha_info->digest[0] = T32(sha_info->digest[0] + E);
    sha_info->digest[1] = T32(sha_info->digest[1] + T);
    sha_info->digest[2] = T32(sha_info->digest[2] + A);
    sha_info->digest[3] = T32(sha_info->digest[3] + B);
    sha_info->digest[4] = T32(sha_info->digest[4] + C);
#else /* !UNRAVEL */
#ifdef UNROLL_LOOPS
    FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
    FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
    FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
    FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
    FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
    FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
    FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
    FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
#else /* !UNROLL_LOOPS */
    for (i =  0; i < 20; ++i) { FG(1); }
    for (i = 20; i < 40; ++i) { FG(2); }
    for (i = 40; i < 60; ++i) { FG(3); }
    for (i = 60; i < 80; ++i) { FG(4); }
#endif /* !UNROLL_LOOPS */
    sha_info->digest[0] = T32(sha_info->digest[0] + A);
    sha_info->digest[1] = T32(sha_info->digest[1] + B);
    sha_info->digest[2] = T32(sha_info->digest[2] + C);
    sha_info->digest[3] = T32(sha_info->digest[3] + D);
    sha_info->digest[4] = T32(sha_info->digest[4] + E);
#endif /* !UNRAVEL */
}

/* initialize the SHA digest */

void sha_init(SHA_INFO *sha_info)
{
    sha_info->digest[0] = 0x67452301L;
    sha_info->digest[1] = 0xefcdab89L;
    sha_info->digest[2] = 0x98badcfeL;
    sha_info->digest[3] = 0x10325476L;
    sha_info->digest[4] = 0xc3d2e1f0L;
    sha_info->count_lo = 0L;
    sha_info->count_hi = 0L;
    sha_info->local = 0;
}

/* update the SHA digest */

void sha_update(SHA_INFO *sha_info, SHA_BYTE *buffer, int count)
{
    int i;
    SHA_LONG clo;

    clo = T32(sha_info->count_lo + ((SHA_LONG) count << 3));
    if (clo < sha_info->count_lo) {
	++sha_info->count_hi;
    }
    sha_info->count_lo = clo;
    sha_info->count_hi += (SHA_LONG) count >> 29;
    if (sha_info->local) {
	i = SHA_BLOCKSIZE - sha_info->local;
	if (i > count) {
	    i = count;
	}
	memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
	count -= i;
	buffer += i;
	sha_info->local += i;
	if (sha_info->local == SHA_BLOCKSIZE) {
	    sha_transform(sha_info);
	} else {
	    return;
	}
    }
    while (count >= SHA_BLOCKSIZE) {
	memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
	buffer += SHA_BLOCKSIZE;
	count -= SHA_BLOCKSIZE;
	sha_transform(sha_info);
    }
    memcpy(sha_info->data, buffer, count);
    sha_info->local = count;
}

/* finish computing the SHA digest */

void sha_final(unsigned char digest[20], SHA_INFO *sha_info)
{
    int count;
    SHA_LONG lo_bit_count, hi_bit_count;

    lo_bit_count = sha_info->count_lo;
    hi_bit_count = sha_info->count_hi;
    count = (int) ((lo_bit_count >> 3) & 0x3f);
    ((SHA_BYTE *) sha_info->data)[count++] = 0x80;
    if (count > SHA_BLOCKSIZE - 8) {
	memset(((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count);
	sha_transform(sha_info);
	memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
    } else {
	memset(((SHA_BYTE *) sha_info->data) + count, 0,
	    SHA_BLOCKSIZE - 8 - count);
    }
    sha_info->data[56] = (unsigned char) ((hi_bit_count >> 24) & 0xff);
    sha_info->data[57] = (unsigned char) ((hi_bit_count >> 16) & 0xff);
    sha_info->data[58] = (unsigned char) ((hi_bit_count >>  8) & 0xff);
    sha_info->data[59] = (unsigned char) ((hi_bit_count >>  0) & 0xff);
    sha_info->data[60] = (unsigned char) ((lo_bit_count >> 24) & 0xff);
    sha_info->data[61] = (unsigned char) ((lo_bit_count >> 16) & 0xff);
    sha_info->data[62] = (unsigned char) ((lo_bit_count >>  8) & 0xff);
    sha_info->data[63] = (unsigned char) ((lo_bit_count >>  0) & 0xff);
    sha_transform(sha_info);
    digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
    digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
    digest[ 2] = (unsigned char) ((sha_info->digest[0] >>  8) & 0xff);
    digest[ 3] = (unsigned char) ((sha_info->digest[0]      ) & 0xff);
    digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
    digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
    digest[ 6] = (unsigned char) ((sha_info->digest[1] >>  8) & 0xff);
    digest[ 7] = (unsigned char) ((sha_info->digest[1]      ) & 0xff);
    digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
    digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
    digest[10] = (unsigned char) ((sha_info->digest[2] >>  8) & 0xff);
    digest[11] = (unsigned char) ((sha_info->digest[2]      ) & 0xff);
    digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
    digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
    digest[14] = (unsigned char) ((sha_info->digest[3] >>  8) & 0xff);
    digest[15] = (unsigned char) ((sha_info->digest[3]      ) & 0xff);
    digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
    digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
    digest[18] = (unsigned char) ((sha_info->digest[4] >>  8) & 0xff);
    digest[19] = (unsigned char) ((sha_info->digest[4]      ) & 0xff);
}

/* compute the SHA digest of a FILE stream */

#define BLOCK_SIZE	8192

void sha_stream(unsigned char digest[20], SHA_INFO *sha_info, FILE *fin)
{
    int i;
    SHA_BYTE data[BLOCK_SIZE];

    sha_init(sha_info);
    while ((i = fread(data, 1, BLOCK_SIZE, fin)) > 0) {
	sha_update(sha_info, data, i);
    }
    sha_final(digest, sha_info);
}

/* print a SHA digest */

void sha_print(unsigned char digest[20])
{
    int i, j;

    for (j = 0; j < 5; ++j) {
	for (i = 0; i < 4; ++i) {
	    printf("%02x", *digest++);
	}
	printf("%c", (j < 4) ? ' ' : '\n');
    }
}

char *sha_version(void)
{
#if (SHA_VERSION == 1)
    static char *version = "SHA-1";
#else
    static char *version = "SHA";
#endif
    return(version);
}