1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
|
/*
* Copyright (C) 2000-2001 the xine project
*
* This file is part of xine, a unix video player.
*
* xine is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* xine is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
* $Id: xine_decoder.c,v 1.43 2003/05/27 14:31:24 jcdutton Exp $
*
* 04-09-2001 DTS passtrough (C) Joachim Koenig
* 09-12-2001 DTS passthrough inprovements (C) James Courtier-Dutton
*
*/
#ifndef __sun
/* required for swab() */
#define _XOPEN_SOURCE 500
#endif
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <netinet/in.h> /* ntohs */
#include <assert.h>
#include "xine_internal.h"
#include "audio_out.h"
#include "buffer.h"
/*
#define LOG_DEBUG
*/
/*
#define ENABLE_DTS_PARSE
*/
typedef struct {
audio_decoder_class_t decoder_class;
} dts_class_t;
typedef struct dts_decoder_s {
audio_decoder_t audio_decoder;
xine_stream_t *stream;
audio_decoder_class_t *class;
uint32_t rate;
uint32_t bits_per_sample;
uint32_t number_of_channels;
int output_open;
} dts_decoder_t;
#ifdef ENABLE_DTS_PARSE
typedef struct {
uint8_t *start;
uint32_t byte_position;
uint32_t bit_position;
uint8_t byte;
} getbits_state_t;
static float AdjTable[] = {
1.0000,
1.1250,
1.2500,
1.4375
};
static int32_t getbits_init(getbits_state_t *state, uint8_t *start) {
if ((state == NULL) || (start == NULL)) return -1;
state->start = start;
state->bit_position = 0;
state->byte_position = 0;
state->byte = start[0];
return 0;
}
/* Non-optimized getbits. */
/* This can easily be optimized for particular platforms. */
static uint32_t getbits(getbits_state_t *state, uint32_t number_of_bits) {
uint32_t result=0;
uint8_t byte=0;
if (number_of_bits > 32) {
printf("Number of bits > 32 in getbits\n");
assert(0);
}
if ((state->bit_position) > 0) { /* Last getbits left us in the middle of a byte. */
if (number_of_bits > (8-state->bit_position)) { /* this getbits will span 2 or more bytes. */
byte = state->byte;
byte = byte >> (state->bit_position);
result = byte;
number_of_bits -= (8-state->bit_position);
state->bit_position = 0;
state->byte_position++;
state->byte = state->start[state->byte_position];
} else {
byte=state->byte;
state->byte = state->byte << number_of_bits;
byte = byte >> (8 - number_of_bits);
result = byte;
state->bit_position += number_of_bits; /* Here it is impossible for bit_position > 8 */
if (state->bit_position == 8) {
state->bit_position = 0;
state->byte_position++;
state->byte = state->start[state->byte_position];
}
number_of_bits = 0;
}
}
if ((state->bit_position) == 0)
while (number_of_bits > 7) {
result = (result << 8) + state->byte;
state->byte_position++;
state->byte = state->start[state->byte_position];
number_of_bits -= 8;
}
if (number_of_bits > 0) { /* number_of_bits < 8 */
byte = state->byte;
state->byte = state->byte << number_of_bits;
state->bit_position += number_of_bits; /* Here it is impossible for bit_position > 7 */
if (state->bit_position > 7) printf ("bit_pos2 too large: %d\n",state->bit_position);
byte = byte >> (8 - number_of_bits);
result = (result << number_of_bits) + byte;
number_of_bits = 0;
}
return result;
}
/* Used by dts.wav files, only 14 bits of the 16 possible are used in the CD. */
static void squash14to16(uint8_t *buf_from, uint8_t *buf_to, uint32_t number_of_bytes) {
int32_t from;
int32_t to=0;
uint16_t sample1;
uint16_t sample2;
uint16_t sample3;
uint16_t sample4;
uint16_t sample16bit;
/* This should convert the 14bit sync word into a 16bit one. */
printf("libdts: squashing %d bytes.\n", number_of_bytes);
for(from=0;from<number_of_bytes;from+=8) {
sample1 = buf_from[from+0] | buf_from[from+1] << 8;
sample1 = (sample1 & 0x1fff) | ((sample1 & 0x8000) >> 2);
sample2 = buf_from[from+2] | buf_from[from+3] << 8;
sample2 = (sample2 & 0x1fff) | ((sample2 & 0x8000) >> 2);
sample16bit = (sample1 << 2) | (sample2 >> 12);
buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
buf_to[to++] = sample16bit & 0xff;
sample3 = buf_from[from+4] | buf_from[from+5] << 8;
sample3 = (sample3 & 0x1fff) | ((sample3 & 0x8000) >> 2);
sample16bit = ((sample2 & 0xfff) << 4) | (sample3 >> 10);
buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
buf_to[to++] = sample16bit & 0xff;
sample4 = buf_from[from+6] | buf_from[from+7] << 8;
sample4 = (sample4 & 0x1fff) | ((sample4 & 0x8000) >> 2);
sample16bit = ((sample3 & 0x3ff) << 6) | (sample4 >> 8);
buf_to[to++] = sample16bit >> 8; /* Add some swabbing in as well */
buf_to[to++] = sample16bit & 0xff;
buf_to[to++] = sample4 & 0xff;
}
}
#endif
void dts_reset (audio_decoder_t *this_gen) {
/* dts_decoder_t *this = (dts_decoder_t *) this_gen; */
}
void dts_discontinuity (audio_decoder_t *this_gen) {
}
#ifdef ENABLE_DTS_PARSE
#if 0
/* FIXME: Make this re-entrant */
void InverseADPCM(void) {
/*
* NumADPCMCoeff =4, the number of ADPCM coefficients.
* raADPCMcoeff[] are the ADPCM coefficients extracted
* from the bit stream.
* raSample[NumADPCMCoeff], ..., raSample[-1] are the
* history from last subframe or subsubframe. It must
* updated each time before reverse ADPCM is run for a
* block of samples for each subband.
*/
for (m=0; m<nNumSample; m++)
for (n=0; n<NumADPCMCoeff; n++)
raSample[m] += raADPCMcoeff[n]*raSample[m-n-1];
}
#endif
static void dts_parse_data (dts_decoder_t *this, buf_element_t *buf) {
uint8_t *data_in = (uint8_t *)buf->content;
getbits_state_t state;
uint32_t sync_type=0;
uint8_t frame_type;
uint8_t deficit_sample_count;
uint8_t crc_present_flag;
uint8_t number_of_pcm_blocks;
uint16_t primary_frame_byte_size;
uint8_t audio_channel_arrangement;
uint8_t core_audio_sampling_frequency;
uint8_t transmission_bit_rate;
uint8_t embedded_down_mix_enabled;
uint8_t embedded_dynamic_range_flag;
uint8_t embedded_time_stamp_flag;
uint8_t auxiliary_data_flag;
uint8_t hdcd;
uint8_t extension_audio_descriptor_flag;
uint8_t extended_coding_flag;
uint8_t audio_sync_word_insertion_flag;
uint8_t low_frequency_effects_flag;
uint8_t predictor_history_flag_switch;
uint16_t header_crc_check_bytes=0;
uint8_t multirate_interpolator_switch;
uint8_t encoder_software_revision;
uint8_t copy_history;
uint8_t source_pcm_resolution;
uint8_t front_sum_difference_flag;
uint8_t surrounds_sum_difference_flag;
int8_t dialog_normalisation_parameter;
int8_t dialog_normalisation_unspecified;
int8_t dialog_normalisation_gain;
int8_t number_of_subframes;
int8_t number_of_primary_audio_channels;
int8_t subband_activity_count[8];
int8_t high_frequency_VQ_start_subband[8];
int8_t joint_intensity_coding_index[8];
int8_t transient_mode_code_book[8];
int8_t scales_factor_code_book[8];
int8_t bit_allocation_quantizer_select[8];
int8_t quantization_index_codebook_select[8][26];
float scale_factor_adjustment_index[8][10];
uint16_t audio_header_crc_check_word;
int32_t nVQIndex;
int32_t nQSelect;
int8_t subsubframe_count;
int8_t partial_subsubframe_sample_count;
int8_t prediction_mode[8][33];
uint32_t channel_extension_sync_word;
uint16_t extension_primary_frame_byte_size;
uint8_t extension_channel_arrangement;
uint32_t extension_sync_word_SYNC96;
uint16_t extension_frame_byte_data_size_FSIZE96;
uint8_t revision_number;
int32_t n, ch, i;
printf("libdts: buf->size = %d\n", buf->size);
printf("libdts: parse1: ");
for(i=0;i<16;i++) {
printf("%02x ",data_in[i]);
}
printf("\n");
if ((data_in[0] == 0x7f) &&
(data_in[1] == 0xfe) &&
(data_in[2] == 0x80) &&
(data_in[3] == 0x01)) {
sync_type=1;
}
if (data_in[0] == 0xff &&
data_in[1] == 0x1f &&
data_in[2] == 0x00 &&
data_in[3] == 0xe8 &&
data_in[4] == 0xf1 && /* DTS standard document was wrong here! */
data_in[5] == 0x07 ) { /* DTS standard document was wrong here! */
squash14to16(&data_in[0], &data_in[0], buf->size);
buf->size = buf->size - (buf->size / 8); /* size = size * 7 / 8; */
sync_type=2;
}
if (sync_type == 0) {
printf("libdts: DTS Sync bad\n");
return;
}
printf("libdts: DTS Sync OK. type=%d\n", sync_type);
printf("libdts: parse2: ");
for(i=0;i<16;i++) {
printf("%02x ",data_in[i]);
}
printf("\n");
getbits_init(&state, &data_in[4]);
/* B.2 Unpack Frame Header Routine */
/* Frame Type V FTYPE 1 bit */
frame_type = getbits(&state, 1); /* 1: Normal Frame, 2:Termination Frame */
/* Deficit Sample Count V SHORT 5 bits */
deficit_sample_count = getbits(&state, 5);
/* CRC Present Flag V CPF 1 bit */
crc_present_flag = getbits(&state, 1);
/* Number of PCM Sample Blocks V NBLKS 7 bits */
number_of_pcm_blocks = getbits(&state, 7);
/* Primary Frame Byte Size V FSIZE 14 bits */
primary_frame_byte_size = getbits(&state, 14);
/* Audio Channel Arrangement ACC AMODE 6 bits */
audio_channel_arrangement = getbits(&state, 6);
/* Core Audio Sampling Frequency ACC SFREQ 4 bits */
core_audio_sampling_frequency = getbits(&state, 4);
/* Transmission Bit Rate ACC RATE 5 bits */
transmission_bit_rate = getbits(&state, 5);
/* Embedded Down Mix Enabled V MIX 1 bit */
embedded_down_mix_enabled = getbits(&state, 1);
/* Embedded Dynamic Range Flag V DYNF 1 bit */
embedded_dynamic_range_flag = getbits(&state, 1);
/* Embedded Time Stamp Flag V TIMEF 1 bit */
embedded_time_stamp_flag = getbits(&state, 1);
/* Auxiliary Data Flag V AUXF 1 bit */
auxiliary_data_flag = getbits(&state, 1);
/* HDCD NV HDCD 1 bits */
hdcd = getbits(&state, 1);
/* Extension Audio Descriptor Flag ACC EXT_AUDIO_ID 3 bits */
extension_audio_descriptor_flag = getbits(&state, 3);
/* Extended Coding Flag ACC EXT_AUDIO 1 bit */
extended_coding_flag = getbits(&state, 1);
/* Audio Sync Word Insertion Flag ACC ASPF 1 bit */
audio_sync_word_insertion_flag = getbits(&state, 1);
/* Low Frequency Effects Flag V LFF 2 bits */
low_frequency_effects_flag = getbits(&state, 2);
/* Predictor History Flag Switch V HFLAG 1 bit */
predictor_history_flag_switch = getbits(&state, 1);
/* Header CRC Check Bytes V HCRC 16 bits */
if (crc_present_flag == 1)
header_crc_check_bytes = getbits(&state, 16);
/* Multirate Interpolator Switch NV FILTS 1 bit */
multirate_interpolator_switch = getbits(&state, 1);
/* Encoder Software Revision ACC/NV VERNUM 4 bits */
encoder_software_revision = getbits(&state, 4);
/* Copy History NV CHIST 2 bits */
copy_history = getbits(&state, 2);
/* Source PCM Resolution ACC/NV PCMR 3 bits */
source_pcm_resolution = getbits(&state, 3);
/* Front Sum/Difference Flag V SUMF 1 bit */
front_sum_difference_flag = getbits(&state, 1);
/* Surrounds Sum/Difference Flag V SUMS 1 bit */
surrounds_sum_difference_flag = getbits(&state, 1);
/* Dialog Normalisation Parameter/Unspecified V DIALNORM/UNSPEC 4 bits */
switch (encoder_software_revision) {
case 6:
dialog_normalisation_unspecified = 0;
dialog_normalisation_parameter = getbits(&state, 4);
dialog_normalisation_gain = - (16+dialog_normalisation_parameter);
break;
case 7:
dialog_normalisation_unspecified = 0;
dialog_normalisation_parameter = getbits(&state, 4);
dialog_normalisation_gain = - (dialog_normalisation_parameter);
break;
default:
dialog_normalisation_unspecified = getbits(&state, 4);
dialog_normalisation_gain = dialog_normalisation_parameter = 0;
break;
}
/* B.3 Audio Decoding */
/* B.3.1 Primary Audio Coding Header */
/* Number of Subframes V SUBFS 4 bits */
number_of_subframes = getbits(&state, 4) + 1 ;
/* Number of Primary Audio Channels V PCHS 3 bits */
number_of_primary_audio_channels = getbits(&state, 3) + 1 ;
/* Subband Activity Count V SUBS 5 bits per channel */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
subband_activity_count[ch] = getbits(&state, 5) + 2 ;
}
/* High Frequency VQ Start Subband V VQSUB 5 bits per channel */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
high_frequency_VQ_start_subband[ch] = getbits(&state, 5) + 1 ;
}
/* Joint Intensity Coding Index V JOINX 3 bits per channel */
for (n=0; ch<number_of_primary_audio_channels; ch++) {
joint_intensity_coding_index[ch] = getbits(&state, 3) ;
}
/* Transient Mode Code Book V THUFF 2 bits per channel */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
transient_mode_code_book[ch] = getbits(&state, 2) ;
}
/* Scale Factor Code Book V SHUFF 3 bits per channel */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
scales_factor_code_book[ch] = getbits(&state, 3) ;
}
/* Bit Allocation Quantizer Select BHUFF V 3 bits per channel */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
bit_allocation_quantizer_select[ch] = getbits(&state, 3) ;
}
/* Quantization Index Codebook Select V SEL variable bits */
/* ABITS=1: */
n=0;
for (ch=0; ch<number_of_primary_audio_channels; ch++)
quantization_index_codebook_select[ch][n] = getbits(&state, 1);
/* ABITS = 2 to 5: */
for (n=1; n<5; n++)
for (ch=0; ch<number_of_primary_audio_channels; ch++)
quantization_index_codebook_select[ch][n] = getbits(&state, 2);
/* ABITS = 6 to 10: */
for (n=5; n<10; n++)
for (ch=0; ch<number_of_primary_audio_channels; ch++)
quantization_index_codebook_select[ch][n] = getbits(&state, 3);
/* ABITS = 11 to 26: */
for (n=10; n<26; n++)
for (ch=0; ch<number_of_primary_audio_channels; ch++)
quantization_index_codebook_select[ch][n] = 0; /* Not transmitted, set to zero. */
/* Scale Factor Adjustment Index V ADJ 2 bits per occasion */
/* ABITS = 1: */
n = 0;
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
int32_t adj;
if ( quantization_index_codebook_select[ch][n] == 0 ) { /* Transmitted only if quantization_index_codebook_select=0 (Huffman code used) */
/* Extract ADJ index */
adj = getbits(&state, 2);
/* Look up ADJ table */
scale_factor_adjustment_index[ch][n] = AdjTable[adj];
}
}
/* ABITS = 2 to 5: */
for (n=1; n<5; n++){
for (ch=0; ch<number_of_primary_audio_channels; ch++){
int32_t adj;
if ( quantization_index_codebook_select[ch][n] < 3 ) { /* Transmitted only when quantization_index_codebook_select<3 */
/* Extract ADJ index */
adj = getbits(&state, 2);
/* Look up ADJ table */
scale_factor_adjustment_index[ch][n] = AdjTable[adj];
}
}
}
/* ABITS = 6 to 10: */
for (n=5; n<10; n++){
for (ch=0; ch<number_of_primary_audio_channels; ch++){
int32_t adj;
if ( quantization_index_codebook_select[ch][n] < 7 ) { /* Transmitted only when quantization_index_codebook_select<7 */
/* Extract ADJ index */
adj = getbits(&state, 2);
/* Look up ADJ table */
scale_factor_adjustment_index[ch][n] = AdjTable[adj];
}
}
}
if (crc_present_flag == 1) { /* Present only if CPF=1. */
audio_header_crc_check_word = getbits(&state, 16);
}
/* FIXME: ALL CODE BELOW HERE does not compile yet. */
/* B.3.2 Unpack Subframes */
/* B.3.2.1 Primary Audio Coding Side Information */
/* Subsubframe Count V SSC 2 bit */
subsubframe_count = getbits(&state, 2) + 1;
/* Partial Subsubframe Sample Count V PSC 3 bit */
partial_subsubframe_sample_count = getbits(&state, 3);
/* Prediction Mode V PMODE 1 bit per subband */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
for (n=0; n<subband_activity_count[ch]; n++) {
prediction_mode[ch][n] = getbits(&state, 1);
}
}
/* Prediction Coefficients VQ Address V PVQ 12 bits per occurrence */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
for (n=0; n<subband_activity_count[ch]; n++) {
if ( prediction_mode[ch][n]>0 ) { /* Transmitted only when ADPCM active */
/* Extract the VQindex */
nVQIndex = getbits(&state,12);
/* Look up the VQ table for prediction coefficients. */
/* FIXME: How to implement LookUp? */
/* FIXME: We don't have the ADPCMCoeff table. */
/* ADPCMCoeffVQ.LookUp(nVQIndex, PVQ[ch][n]);*/ /* 4 coefficients FIXME: Need to work out what this does. */
}
}
}
/* Bit Allocation Index V ABITS variable bits */
/* FIXME: No getbits here InverseQ does the getbits */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
/* Bit Allocation Quantizer Select tells which codebook was used */
nQSelect = bit_allocation_quantizer_select[ch];
/* Use this codebook to decode the bit stream for bit_allocation_index[ch][n] */
for (n=0; n<high_frequency_VQ_start_subband[ch]; n++) {
/* Not for VQ encoded subbands. */
/* FIXME: What is Inverse Quantization(InverseQ) ? */
/* This basically selects a huffman table number nQSelect, */
/* and uses it to read a variable amount of bits and does a huffman search to find the value. */
/* FIXME: Need to implement InverseQ, so we can uncomment this line */
/*QABITS.ppQ[nQSelect]->InverseQ(&state, bit_allocation_index[ch][n]); */
}
}
#if 0
/* FIXME: ALL CODE BELOW HERE does not compile yet. */
/* Transition Mode V TMODE variable bits */
/* Always assume no transition unless told */
int32_t nQSelect;
for (ch=0; ch<number_of_primary_audio_channels; ch++){
for (n=0; n<subband_activity_count[ch]; n++) {
transition_mode[ch][n] = 0;
}
/* Decode transition_mode[ch][n] */
if ( subsubframe_count>1 ) {
/* Transient possible only if more than one subsubframe. */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
/* transition_mode[ch][n] is encoded by a codebook indexed by transient_mode_code_book[ch] */
nQSelect = transient_mode_code_book[ch];
for (n=0; n<high_frequency_VQ_start_subband[ch]; n++) {
/* No VQ encoded subbands */
if ( bit_allocation_index[ch][n] >0 ) {
/* Present only if bits allocated */
/* Use codebook nQSelect to decode transition_mode from the bit stream */
/* FIXME: What is Inverse Quantization(InverseQ) ? */
QTMODE.ppQ[nQSelect]->InverseQ(InputFrame,transition_mode[ch][n]);
}
}
}
}
}
/* Scale Factors V SCALES variable bits */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
/* Clear scale_factors */
for (n=0; n<subband_activity_count[ch]; n++) {
scale_factors[ch][n][0] = 0;
scale_factors[ch][n][1] = 0;
}
/* scales_factor_code_book indicates which codebook was used to encode scale_factors */
nQSelect = scales_factor_code_book[ch];
/* Select the root square table (scale_factors were nonlinearly */
/* quantized). */
if ( nQSelect == 6 ) {
pScaleTable = &RMS7Bit; /* 7-bit root square table */
} else {
pScaleTable = &RMS6Bit; /* 6-bit root square table */
}
/*
* Clear accumulation (if Huffman code was used, the difference
* of scale_factors was encoded).
*/
nScaleSum = 0;
/*
* Extract scale_factors for Subbands up to high_frequency_VQ_start_subband[ch]
*/
for (n=0; n<high_frequency_VQ_start_subband[ch]; n++) {
if ( bit_allocation_index[ch][n] >0 ) { /* Not present if no bit allocated */
/*
* First scale factor
*/
/* Use the (Huffman) code indicated by nQSelect to decode */
/* the quantization index of scale_factors from the bit stream */
/* FIXME: What is Inverse Quantization(InverseQ) ? */
QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
/* Take care of difference encoding */
if ( nQSelect < 5 ) { /* Huffman encoded, nScale is the difference */
nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
} else { /* Otherwise, nScale is the quantization */
nScaleSum = nScale; /* level of scale_factors. */
}
/* Look up scale_factors from the root square table */
/* FIXME: How to implement LookUp? */
pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][0])
/*
* Two scale factors transmitted if there is a transient
*/
if (transition_mode[ch][n]>0) {
/* Use the (Huffman) code indicated by nQSelect to decode */
/* the quantization index of scale_factors from the bit stream */
/* FIXME: What is Inverse Quantization(InverseQ) ? */
QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
/* Take care of difference encoding */
if ( nQSelect < 5 ) /* Huffman encoded, nScale is the difference */
nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
else /* Otherwise, nScale is the quantization */
nScaleSum = nScale; /* level of scale_factors. */
/* Look up scale_factors from the root square table */
/* FIXME: How to implement LookUp? */
pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][1]);
}
}
}
/*
* High frequency VQ subbands
*/
for (n=high_frequency_VQ_start_subband[ch]; n<subband_activity_count[ch]; n++) {
/* Use the code book indicated by nQSelect to decode */
/* the quantization index of scale_factors from the bit stream */
/* FIXME: What is Inverse Quantization(InverseQ) ? */
QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nScale);
/* Take care of difference encoding */
if ( nQSelect < 5 ) /* Huffman encoded, nScale is the difference */
nScaleSum += nScale; /* of the quantization indexes of scale_factors. */
else /* Otherwise, nScale is the quantization */
nScaleSum = nScale; /* level of scale_factors. */
/* Look up scale_factors from the root square table */
/* FIXME: How to implement LookUp? */
pScaleTable->LookUp(nScaleSum, scale_factors[ch][n][0])
}
}
/* Joint Subband Scale Factor Codebook Select V JOIN SHUFF 3 bits per channel */
for (ch=0; ch<number_of_primary_audio_channels; ch++)
if (joint_intensity_coding_index[ch]>0 ) /* Transmitted only if joint subband coding enabled. */
joint_subband_scale_factor_codebook_select[ch] = getbits(&state,3);
/* Scale Factors for Joint Subband Coding V JOIN SCALES variable bits */
int nSourceCh;
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
if (joint_intensity_coding_index[ch]>0 ) { /* Only if joint subband coding enabled. */
nSourceCh = joint_intensity_coding_index[ch]-1; /* Get source channel. joint_intensity_coding_index counts */
/* channels as 1,2,3,4,5, so minus 1. */
nQSelect = joint_subband_scale_factor_codebook_select[ch]; /* Select code book. */
for (n=subband_activity_count[ch]; n<subband_activity_count[nSourceCh]; n++) {
/* Use the code book indicated by nQSelect to decode */
/* the quantization index of scale_factors_for_joint_subband_coding */
/* FIXME: What is Inverse Quantization(InverseQ) ? */
QSCALES.ppQ[nQSelect]->InverseQ(InputFrame, nJScale);
/* Bias by 64 */
nJScale = nJScale + 64;
/* Look up scale_factors_for_joint_subband_coding from the joint scale table */
/* FIXME: How to implement LookUp? */
JScaleTbl.LookUp(nJScale, scale_factors_for_joint_subband_coding[ch][n]);
}
}
}
/* Stereo Down-Mix Coefficients NV DOWN 7 bits per coefficient */
if ( (MIX!=0) && (number_of_primary_audio_channels>2) ) {
/* Extract down mix indexes */
for (ch=0; ch<number_of_primary_audio_channels; ch++) { /* Each primary channel */
stereo_down_mix_coefficients[ch][0] = getbits(&state,7);
stereo_down_mix_coefficients[ch][1] = getbits(&state,7);
}
}
/* Look up down mix coefficients */
for (n=0; n<subband_activity_count; n++) { /* Each active subbands */
LeftChannel = 0;
RightChannel = 0;
for (ch=0; ch<number_of_primary_audio_channels; ch++) { /* Each primary channels */
LeftChannel += stereo_down_mix_coefficients[ch][0]*Sample[Ch];
RightChannel += stereo_down_mix_coefficients[ch][1]*Sample[Ch];
}
}
/* Down mixing may also be performed on the PCM samples after the filterbank reconstruction. */
/* Dynamic Range Coefficient NV RANGE 8 bits */
if ( embedded_dynamic_range_flag != 0 ) {
nIndex = getbits(&state,8);
/* FIXME: How to implement LookUp? */
RANGEtbl.LookUp(nIndex,dynamic_range_coefficient);
/* The following range adjustment is to be performed */
/* after QMF reconstruction */
for (ch=0; ch<number_of_primary_audio_channels; ch++)
for (n=0; n<nNumSamples; n++)
AudioCh[ch].ReconstructedSamples[n] *= dynamic_range_coefficient;
}
/* Side Information CRC Check Word V SICRC 16 bits */
if ( CPF==1 ) /* Present only if CPF=1. */
SICRC = getbits(&state,16);
/* B.3.3 Primary Audio Data Arrays */
/* VQ Encoded High Frequency Subbands NV HFREQ 10 bits per applicable subbands */
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
for (n=high_frequency_VQ_start_subband[ch]; n<subband_activity_count[ch]; n++) {
/* Extract the VQ address from the bit stream */
nVQIndex = getbits(&state,10);
/* Look up the VQ code book for 32 subband samples. */
/* FIXME: How to implement LookUp? */
HFreqVQ.LookUp(nVQIndex, VQ_encoded_high_frequency_subbands[ch][n])
/* Scale and take the samples */
Scale = (real)scale_factors[ch][n][0]; /* Get the scale factor */
for (m=0; m<subsubframe_count*8; m++, nSample++) {
aPrmCh[ch].aSubband[n].raSample[m] = rScale*VQ_encoded_high_frequency_subbands[ch][n][m];
}
}
}
/* Low Frequency Effect Data V LFE 8 bits per sample */
if ( low_frequency_effects_flag>0 ) { /* Present only if flagged by low_frequency_effects_flag */
/* extract low_frequency_effect_data samples from the bit stream */
for (n=0; n<2*low_frequency_effects_flag*subsubframe_count; n++) {
low_frequency_effect_data[n] = (signed int)(signed char)getbits(&state,8);
/* Use char to get sign extension because it */
/* is 8-bit 2's compliment. */
/* Extract scale factor index from the bit stream */
}
LFEscaleIndex = getbits(&state,8);
/* Look up the 7-bit root square quantization table */
/* FIXME: How to implement LookUp? */
pLFE_RMS->LookUp(LFEscaleIndex,nScale);
/* Account for the quantizer step size which is 0.035 */
rScale = nScale*0.035;
/* Get the actual low_frequency_effect_data samples */
for (n=0; n<2*low_frequency_effects_flag*subsubframe_count; n++) {
LFECh.rLFE[k] = low_frequency_effect_data[n]*rScale;
}
/* Interpolation low_frequency_effect_data samples */
LFECh.InterpolationFIR(low_frequency_effects_flag); /* low_frequency_effects_flag indicates which */
/* interpolation filter to use */
}
/* Audio Data V AUDIO variable bits */
/*
* Select quantization step size table
*/
if ( RATE == 0x1f ) {
pStepSizeTable = &StepSizeLossLess; /* Lossless quantization */
} else {
pStepSizeTable = &StepSizeLossy; /* Lossy */
}
/*
* Unpack the subband samples
*/
for (nSubSubFrame=0; nSubSubFrame<subsubframe_count; nSubSubFrame++) {
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
for (n=0; n<high_frequency_VQ_start_subband[ch]; n++) { /* Not high frequency VQ subbands */
/*
* Select the mid-tread linear quantizer
*/
nABITS = bit_allocation_index[ch][n]; /* Select the mid-tread quantizer */
pCQGroup = &pCQGroupAUDIO[nABITS-1];/* Select the group of */
/* code books corresponding to the */
/* the mid-tread linear quantizer. */
nNumQ = pCQGroupAUDIO[nABITS-1].nNumQ-1;/* Number of code */
/* books in this group */
/*
* Determine quantization index code book and its type
*/
/* Select quantization index code book */
nSEL = quantization_index_codebook_select[ch][nABITS-1];
/* Determine its type */
nQType = 1; /* Assume Huffman type by default */
if ( nSEL==nNumQ ) { /* Not Huffman type */
if ( nABITS<=7 ) {
nQType = 3; /* Block code */
} else {
nQType = 2; /* No further encoding */
}
}
if ( nABITS==0 ) { /* No bits allocated */
nQType = 0;
}
/*
* Extract bits from the bit stream
* This retrieves 8 AUDIO values
*/
switch ( nQType ) {
case 0: /* No bits allocated */
for (m=0; m<8; m++)
AUDIO[m] = 0;
break;
case 1: /* Huffman code */
for (m=0; m<8; m++)
/* FIXME: What is Inverse Quantization(InverseQ) ? */
pCQGroup->ppQ[nSEL]->InverseQ(InputFrame,AUDIO[m]);
break;
case 2: /* No further encoding */
for (m=0; m<8; m++) {
/* Extract quantization index from the bit stream */
/* FIXME: What is Inverse Quantization(InverseQ) ? */
pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
/* Take care of 2's compliment */
AUDIO[m] = pCQGroup->ppQ[nSEL]->SignExtension(nCode);
}
break;
case 3: /* Block code */
/* Block code is just 1 value with 4 samples derived from it.
* with each sample a digit from the number (using a base derived from nABITS via a table)
* E.g. nABITS = 10, base = 5 (Base value taken from table.)
* 1st sample = (value % 5) - (int(5/2); (Values between -2 and +2 )
* 2st sample = ((value / 5) % 5) - (int(5/2);
* 3rd sample = ((value / 25) % 5) - (int(5/2);
* 4th sample = ((value / 125) % 5) - (int(5/2);
*
*/
pCBQ = &pCBlockQ[nABITS-1]; /* Select block code book */
m = 0;
for (nBlock=0; nBlock<2; nBlock++) {
/* Extract the block code index from the bit stream */
/* FIXME: What is Inverse Quantization(InverseQ) ? */
pCQGroup->ppQ[nSEL]->InverseQ(InputFrame, nCode)
/* Look up 4 samples from the block code book */
/* FIXME: How to implement LookUp? */
pCBQ->LookUp(nCode,&AUDIO[m])
m += 4;
}
break;
default: /* Undefined */
printf("ERROR: Unknown AUDIO quantization index code book.");
}
/*
* Account for quantization step size and scale factor
*/
/* Look up quantization step size */
nABITS = bit_allocation_index[ch][n];
/* FIXME: How to implement LookUp? */
pStepSizeTable->LookUp(nABITS, rStepSize);
/* Identify transient location */
nTmode = transition_mode[ch][n];
if ( nTmode == 0 ) /* No transient */
nTmode = subsubframe_count;
/* Determine proper scale factor */
if (nSubSubFrame<nTmode) /* Pre-transient */
rScale = rStepSize * scale_factors[ch][n][0]; /* Use first scale factor */
else /* After-transient */
rScale = rStepSize * scale_factors[ch][n][1]; /* Use second scale factor */
/* Adjustmemt of scale factor */
rScale *= scale_factor_adjustment_index[ch][quantization_index_codebook_select[ch][nABITS-1]]; /* scale_factor_adjustment_index[ ][ ] are assumed 1 */
/* unless changed by bit */
/* stream when quantization_index_codebook_select indicates */
/* Huffman code. */
/* Scale the samples */
nSample = 8*nSubSubFrame; /* Set sample index */
for (m=0; m<8; m++, nSample++)
aPrmCh[ch].aSubband[n].aSample[nSample] = rScale*AUDIO[m];
/*
* Inverse ADPCM
*/
if ( PMODE[ch][n] != 0 ) /* Only when prediction mode is on. */
aPrmCh[ch].aSubband[n].InverseADPCM();
/*
* Check for DSYNC
*/
if ( (nSubSubFrame==(subsubframe_count-1)) || (ASPF==1) ) {
DSYNC = getbits(&state,16);
if ( DSYNC != 0xffff )
printf("DSYNC error at end of subsubframe #%d", nSubSubFrame);
}
}
}
/* B.3.4 Unpack Optional Information */
/* TODO ^^^ */
#endif
/* CODE BELOW here does compile */
printf("getbits status: byte_pos = %d, bit_pos = %d\n",
state.byte_position,
state.bit_position);
#if 0
for(n=0;n<2016;n++) {
if((n % 32) == 0) printf("\n");
printf("%02X ",state.start[state.byte_position+n]);
}
printf("\n");
#endif
#if 0
if ((extension_audio_descriptor_flag == 0)
|| (extension_audio_descriptor_flag == 3)) {
printf("libdts:trying extension...\n");
channel_extension_sync_word = getbits(&state, 32);
extension_primary_frame_byte_size = getbits(&state, 10);
extension_channel_arrangement = getbits(&state, 4);
}
#endif
#if 0
extension_sync_word_SYNC96 = getbits(&state, 32);
extension_frame_byte_data_size_FSIZE96 = getbits(&state, 12);
revision_number = getbits(&state, 4);
#endif
printf("frame_type = %d\n",
frame_type);
printf("deficit_sample_count = %d\n",
deficit_sample_count);
printf("crc_present_flag = %d\n",
crc_present_flag);
printf("number_of_pcm_blocks = %d\n",
number_of_pcm_blocks);
printf("primary_frame_byte_size = %d\n",
primary_frame_byte_size);
printf("audio_channel_arrangement = %d\n",
audio_channel_arrangement);
printf("core_audio_sampling_frequency = %d\n",
core_audio_sampling_frequency);
printf("transmission_bit_rate = %d\n",
transmission_bit_rate);
printf("embedded_down_mix_enabled = %d\n",
embedded_down_mix_enabled);
printf("embedded_dynamic_range_flag = %d\n",
embedded_dynamic_range_flag);
printf("embedded_time_stamp_flag = %d\n",
embedded_time_stamp_flag);
printf("auxiliary_data_flag = %d\n",
auxiliary_data_flag);
printf("hdcd = %d\n",
hdcd);
printf("extension_audio_descriptor_flag = %d\n",
extension_audio_descriptor_flag);
printf("extended_coding_flag = %d\n",
extended_coding_flag);
printf("audio_sync_word_insertion_flag = %d\n",
audio_sync_word_insertion_flag);
printf("low_frequency_effects_flag = %d\n",
low_frequency_effects_flag);
printf("predictor_history_flag_switch = %d\n",
predictor_history_flag_switch);
if (crc_present_flag == 1) {
printf("header_crc_check_bytes = %d\n",
header_crc_check_bytes);
}
printf("multirate_interpolator_switch = %d\n",
multirate_interpolator_switch);
printf("encoder_software_revision = %d\n",
encoder_software_revision);
printf("copy_history = %d\n",
copy_history);
printf("source_pcm_resolution = %d\n",
source_pcm_resolution);
printf("front_sum_difference_flag = %d\n",
front_sum_difference_flag);
printf("surrounds_sum_difference_flag = %d\n",
surrounds_sum_difference_flag);
printf("dialog_normalisation_parameter = %d\n",
dialog_normalisation_parameter);
printf("dialog_normalisation_unspecified = %d\n",
dialog_normalisation_unspecified);
printf("dialog_normalisation_gain = %d\n",
dialog_normalisation_gain);
printf("number_of_subframes = %d\n",number_of_subframes);
printf("number_of_primary_audio_channels = %d\n", number_of_primary_audio_channels);
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
printf("subband_activity_count[%d] = %d\n", ch, subband_activity_count[ch]);
}
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
printf("high_frequency_VQ_start_subband[%d] = %d\n", ch, high_frequency_VQ_start_subband[ch]);
}
for (n=0; ch<number_of_primary_audio_channels; ch++) {
printf("joint_intensity_coding_index[%d] = %d\n", ch, joint_intensity_coding_index[ch]);
}
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
printf("transient_mode_code_book[%d] = %d\n", ch, transient_mode_code_book[ch]);
}
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
printf("scales_factor_code_book[%d] = %d\n", ch, scales_factor_code_book[ch]);
}
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
printf("bit_allocation_quantizer_select[%d] = %d\n", ch, bit_allocation_quantizer_select[ch]);
}
printf("quantization_index_codebook_select: -\n");
for (ch=0; ch<number_of_primary_audio_channels; ch++) {
for(n=0; n < 10;n++) {
printf("%04d ",quantization_index_codebook_select[ch][n]);
}
printf("\n");
}
#if 0
printf("channel_extension_sync_word = 0x%08X\n",
channel_extension_sync_word);
printf("extension_primary_frame_byte_sizes = %d\n",
extension_primary_frame_byte_size);
printf("extension_channel_arrangement = %d\n",
extension_channel_arrangement);
printf("extension_sync_word_SYNC96 = 0x%08X\n",
extension_sync_word_SYNC96);
printf("extension_frame_byte_data_size_FSIZE96 = %d\n",
extension_frame_byte_data_size_FSIZE96);
printf("revision_number = %d\n",
revision_number);
#endif
assert(0);
return;
}
#endif
void dts_decode_data (audio_decoder_t *this_gen, buf_element_t *buf) {
dts_decoder_t *this = (dts_decoder_t *) this_gen;
uint8_t *data_in = (uint8_t *)buf->content;
uint8_t *data_out;
audio_buffer_t *audio_buffer;
uint32_t ac5_pcm_samples;
uint32_t ac5_spdif_type=0;
uint32_t ac5_length=0;
uint32_t ac5_pcm_length;
uint32_t number_of_frames;
uint32_t first_access_unit;
int n;
#ifdef LOG_DEBUG
printf("libdts: DTS decode_data called.\n");
#endif
#ifdef ENABLE_DTS_PARSE
dts_parse_data (this, buf);
#endif
if ((this->stream->audio_out->get_capabilities(this->stream->audio_out) & AO_CAP_MODE_AC5) == 0) {
return;
}
if (!this->output_open) {
this->output_open = (this->stream->audio_out->open (this->stream->audio_out, this->stream,
this->bits_per_sample,
this->rate,
AO_CAP_MODE_AC5));
}
if (!this->output_open)
return;
if (buf->decoder_flags & BUF_FLAG_PREVIEW)
return;
number_of_frames = buf->decoder_info[1]; /* Number of frames */
first_access_unit = buf->decoder_info[2]; /* First access unit */
if (number_of_frames > 2) {
return;
}
for(n=1;n<=number_of_frames;n++) {
data_in += ac5_length;
if(data_in >= (buf->content+buf->size)) {
printf("libdts: DTS length error\n");
return;
}
if ((data_in[0] != 0x7f) ||
(data_in[1] != 0xfe) ||
(data_in[2] != 0x80) ||
(data_in[3] != 0x01)) {
printf("libdts: DTS Sync bad\n");
return;
}
audio_buffer = this->stream->audio_out->get_buffer (this->stream->audio_out);
audio_buffer->frame_header_count = buf->decoder_info[1]; /* Number of frames */
audio_buffer->first_access_unit = buf->decoder_info[2]; /* First access unit */
#ifdef LOG_DEBUG
printf("libdts: DTS frame_header_count = %u\n",audio_buffer->frame_header_count);
printf("libdts: DTS first access unit = %u\n",audio_buffer->first_access_unit);
#endif
if (n == first_access_unit) {
audio_buffer->vpts = buf->pts;
} else {
audio_buffer->vpts = 0;
}
data_out=(uint8_t *) audio_buffer->mem;
ac5_pcm_samples=((data_in[4] & 0x01) << 6) | ((data_in[5] >>2) & 0x3f);
ac5_length=((data_in[5] & 0x03) << 12) | (data_in[6] << 4) | ((data_in[7] & 0xf0) >> 4);
ac5_length++;
if (ac5_length > 8191) {
printf("libdts: ac5_length too long\n");
ac5_pcm_length = 0;
} else {
ac5_pcm_length = (ac5_pcm_samples + 1) * 32;
}
switch (ac5_pcm_length) {
case 512:
ac5_spdif_type = 0x0b; /* DTS-1 (512-sample bursts) */
break;
case 1024:
ac5_spdif_type = 0x0c; /* DTS-1 (1024-sample bursts) */
break;
case 2048:
ac5_spdif_type = 0x0d; /* DTS-1 (2048-sample bursts) */
break;
default:
printf("libdts: DTS %i-sample bursts not supported\n", ac5_pcm_length);
return;
}
#ifdef LOG_DEBUG
{
int i;
printf("libdts: DTS frame type=%d\n",data_in[4] >> 7);
printf("libdts: DTS deficit frame count=%d\n",(data_in[4] & 0x7f) >> 2);
printf("libdts: DTS AC5 PCM samples=%d\n",ac5_pcm_samples);
printf("libdts: DTS AC5 length=%d\n",ac5_length);
printf("libdts: DTS AC5 bitrate=%d\n",((data_in[8] & 0x03) << 4) | (data_in[8] >> 4));
printf("libdts: DTS AC5 spdif type=%d\n", ac5_spdif_type);
printf("libdts: ");
for(i=2000;i<2048;i++) {
printf("%02x ",data_in[i]);
}
printf("\n");
}
#endif
#ifdef LOG_DEBUG
printf("libdts: DTS length=%d loop=%d pts=%lld\n",ac5_pcm_length,n,audio_buffer->vpts);
#endif
audio_buffer->num_frames = ac5_pcm_length;
data_out[0] = 0x72; data_out[1] = 0xf8; /* spdif syncword */
data_out[2] = 0x1f; data_out[3] = 0x4e; /* .............. */
data_out[4] = ac5_spdif_type; /* DTS data */
data_out[5] = 0; /* Unknown */
data_out[6] = (ac5_length << 3) & 0xff; /* ac5_length * 8 */
data_out[7] = ((ac5_length ) >> 5) & 0xff;
if( ac5_pcm_length ) {
if( ac5_pcm_length % 2) {
swab(data_in, &data_out[8], ac5_length );
} else {
swab(data_in, &data_out[8], ac5_length + 1);
}
}
this->stream->audio_out->put_buffer (this->stream->audio_out, audio_buffer, this->stream);
}
}
static void dts_dispose (audio_decoder_t *this_gen) {
dts_decoder_t *this = (dts_decoder_t *) this_gen;
if (this->output_open)
this->stream->audio_out->close (this->stream->audio_out, this->stream);
this->output_open = 0;
free (this);
}
static audio_decoder_t *open_plugin (audio_decoder_class_t *class_gen, xine_stream_t
*stream) {
dts_decoder_t *this ;
#ifdef LOG_DEBUG
printf("libdts: DTS open_plugin called.\n");
#endif
this = (dts_decoder_t *) malloc (sizeof (dts_decoder_t));
this->audio_decoder.decode_data = dts_decode_data;
this->audio_decoder.reset = dts_reset;
this->audio_decoder.discontinuity = dts_discontinuity;
this->audio_decoder.dispose = dts_dispose;
this->stream = stream;
this->class = class_gen;
this->output_open = 0;
this->rate = 48000;
this->bits_per_sample=16;
this->number_of_channels=2;
return &this->audio_decoder;
}
static char *get_identifier (audio_decoder_class_t *this) {
return "DTS";
}
static char *get_description (audio_decoder_class_t *this) {
return "DTS passthru audio format decoder plugin";
}
static void dispose_class (audio_decoder_class_t *this) {
#ifdef LOG_DEBUG
printf("libdts: DTS class dispose called.\n");
#endif
free (this);
}
static void *init_plugin (xine_t *xine, void *data) {
dts_class_t *this ;
#ifdef LOG_DEBUG
printf("DTS class init_plugin called.\n");
#endif
this = (dts_class_t *) malloc (sizeof (dts_class_t));
this->decoder_class.open_plugin = open_plugin;
this->decoder_class.get_identifier = get_identifier;
this->decoder_class.get_description = get_description;
this->decoder_class.dispose = dispose_class;
return this;
}
static uint32_t audio_types[] = {
BUF_AUDIO_DTS, 0
};
static decoder_info_t dec_info_audio = {
audio_types, /* supported types */
1 /* priority */
};
plugin_info_t xine_plugin_info[] = {
/* type, API, "name", version, special_info, init_function */
{ PLUGIN_AUDIO_DECODER, 13, "dts", XINE_VERSION_CODE, &dec_info_audio, init_plugin },
{ PLUGIN_NONE, 0, "", 0, NULL, NULL }
};
|