1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
/*
** FAAD - Freeware Advanced Audio Decoder
** Copyright (C) 2002 M. Bakker
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** $Id: ic_predict.c,v 1.2 2002/12/16 19:00:14 miguelfreitas Exp $
**/
#include "common.h"
#include "structs.h"
#ifdef MAIN_DEC
#include "syntax.h"
#include "ic_predict.h"
#include "pns.h"
static void ic_predict(pred_state *state, real_t input, real_t *output, uint8_t pred)
{
real_t dr1, predictedvalue;
real_t e0, e1;
real_t k1, k2;
real_t *r;
real_t *KOR;
real_t *VAR;
r = state->r; /* delay elements */
KOR = state->KOR; /* correlations */
VAR = state->VAR; /* variances */
if (VAR[0] == 0)
k1 = 0;
else
k1 = KOR[0]/VAR[0]*B;
if (pred)
{
/* only needed for the actual predicted value, k1 is always needed */
if (VAR[1] == 0)
k2 = 0;
else
k2 = KOR[1]/VAR[1]*B;
predictedvalue = MUL(k1, r[0]) + MUL(k2, r[1]);
*output = input + predictedvalue;
} else {
*output = input;
}
/* calculate new state data */
e0 = *output;
e1 = e0 - MUL(k1, r[0]);
dr1 = MUL(k1, e0);
VAR[0] = MUL(ALPHA, VAR[0]) + MUL(REAL_CONST(0.5), (MUL(r[0], r[0]) + MUL(e0, e0)));
KOR[0] = MUL(ALPHA, KOR[0]) + MUL(r[0], e0);
VAR[1] = MUL(ALPHA, VAR[1]) + MUL(REAL_CONST(0.5), (MUL(r[1], r[1]) + MUL(e1, e1)));
KOR[1] = MUL(ALPHA, KOR[1]) + MUL(r[1], e1);
r[1] = MUL(A, (r[0]-dr1));
r[0] = MUL(A, e0);
}
static void reset_pred_state(pred_state *state)
{
state->r[0] = 0;
state->r[1] = 0;
state->KOR[0] = 0;
state->KOR[1] = 0;
state->VAR[0] = REAL_CONST(1.0);
state->VAR[1] = REAL_CONST(1.0);
}
void pns_reset_pred_state(ic_stream *ics, pred_state *state)
{
uint8_t sfb, g, b;
uint16_t i, offs, offs2;
/* prediction only for long blocks */
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
return;
for (g = 0; g < ics->num_window_groups; g++)
{
for (b = 0; b < ics->window_group_length[g]; b++)
{
for (sfb = 0; sfb < ics->max_sfb; sfb++)
{
if (is_noise(ics, g, sfb))
{
offs = ics->swb_offset[sfb];
offs2 = ics->swb_offset[sfb+1];
for (i = offs; i < offs2; i++)
reset_pred_state(&state[i]);
}
}
}
}
}
void reset_all_predictors(pred_state *state, uint16_t frame_len)
{
uint16_t i;
for (i = 0; i < frame_len; i++)
reset_pred_state(&state[i]);
}
/* intra channel prediction */
void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
uint16_t frame_len)
{
uint8_t sfb;
uint16_t bin;
if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
{
reset_all_predictors(state, frame_len);
} else {
for (sfb = 0; sfb < ics->pred.limit; sfb++)
{
uint16_t low = ics->swb_offset[sfb];
uint16_t high = ics->swb_offset[sfb+1];
for (bin = low; bin < high; bin++)
{
ic_predict(&state[bin], spec[bin], &spec[bin],
(ics->predictor_data_present &&
ics->pred.prediction_used[sfb]));
}
}
if (ics->predictor_data_present)
{
if (ics->pred.predictor_reset)
{
for (bin = ics->pred.predictor_reset_group_number - 1;
bin < frame_len; bin += 30)
{
reset_pred_state(&state[bin]);
}
}
}
}
}
#endif
|