1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/*
** FAAD - Freeware Advanced Audio Decoder
** Copyright (C) 2002 M. Bakker
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** $Id: mdct.c,v 1.2 2002/08/09 22:36:36 miguelfreitas Exp $
**/
/*
* Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
* and consists of three steps: pre-(I)FFT complex multiplication, complex
* (I)FFT, post-(I)FFT complex multiplication,
*
* As described in:
* P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
* Implementation of Filter Banks Based on 'Time Domain Aliasing
* Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212.
*
*
* As of April 6th 2002 completely rewritten.
* Thanks to the FFTW library this (I)MDCT can now be used for any data
* size n, where n is divisible by 8.
*
*/
#include "common.h"
#include <stdlib.h>
#include <assert.h>
#ifdef USE_FFTW
/* uses fftw (http://www.fftw.org) for very fast arbitrary-n FFT and IFFT */
#include <fftw.h>
#else
#include "cfft.h"
#endif
#include "mdct.h"
void faad_mdct_init(mdct_info *mdct, uint16_t N)
{
uint16_t k;
assert(N % 8 == 0);
mdct->N = N;
mdct->sincos = (faad_sincos*)malloc(N/4*sizeof(faad_sincos));
#ifdef USE_FFTW
mdct->Z1 = (fftw_complex*)malloc(N/4*sizeof(fftw_complex));
mdct->Z2 = (fftw_complex*)malloc(N/4*sizeof(fftw_complex));
#else
mdct->Z1 = (real_t*)malloc(N/2*sizeof(real_t));
mdct->Z2 = (faad_complex*)malloc(N/4*sizeof(faad_complex));
#endif
for (k = 0; k < N/4; k++)
{
real_t angle = 2.0 * M_PI * (k + 1.0/8.0)/(real_t)N;
mdct->sincos[k].sin = -sin(angle);
mdct->sincos[k].cos = -cos(angle);
}
#ifdef USE_FFTW
mdct->plan_backward = fftw_create_plan(N/4, FFTW_BACKWARD, FFTW_ESTIMATE);
#ifdef LTP_DEC
mdct->plan_forward = fftw_create_plan(N/4, FFTW_FORWARD, FFTW_ESTIMATE);
#endif
#else
/* own implementation */
mdct->cfft = cffti(N/4);
#endif
}
void faad_mdct_end(mdct_info *mdct)
{
#ifdef USE_FFTW
fftw_destroy_plan(mdct->plan_backward);
#ifdef LTP_DEC
fftw_destroy_plan(mdct->plan_forward);
#endif
#else
cfftu(mdct->cfft);
#endif
if (mdct->Z2) free(mdct->Z2);
if (mdct->Z1) free(mdct->Z1);
if (mdct->sincos) free(mdct->sincos);
}
void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
uint16_t k;
#ifdef USE_FFTW
fftw_complex *Z1 = mdct->Z1;
fftw_complex *Z2 = mdct->Z2;
#else
real_t *Z1 = mdct->Z1;
faad_complex *Z2 = mdct->Z2;
#endif
faad_sincos *sincos = mdct->sincos;
real_t fftdata[1024];
uint16_t N = mdct->N;
uint16_t N2 = N >> 1;
uint16_t N4 = N >> 2;
uint16_t N8 = N >> 3;
real_t fac = 2.0/(real_t)N;
/* pre-IFFT complex multiplication */
for (k = 0; k < N4; k++)
{
uint16_t n = k << 1;
real_t x0 = X_in[ n];
real_t x1 = X_in[N2 - 1 - n];
#ifdef USE_FFTW
Z1[k].re = MUL(fac, MUL(x1, sincos[k].cos) - MUL(x0, sincos[k].sin));
Z1[k].im = MUL(fac, MUL(x0, sincos[k].cos) + MUL(x1, sincos[k].sin));
#else
Z1[2*k] = MUL(fac, MUL(x1, sincos[k].cos) - MUL(x0, sincos[k].sin));
Z1[2*k+1] = MUL(fac, MUL(x0, sincos[k].cos) + MUL(x1, sincos[k].sin));
#endif
}
/* complex IFFT */
#ifdef USE_FFTW
fftw_one(mdct->plan_backward, Z1, Z2);
#else
cfftb(mdct->cfft, Z1);
#endif
/* post-IFFT complex multiplication */
for (k = 0; k < N4; k++)
{
#ifdef USE_FFTW
real_t zr = Z2[k].re;
real_t zi = Z2[k].im;
#else
real_t zr = Z1[2*k];
real_t zi = Z1[2*k+1];
#endif
Z2[k].re = MUL(zr, sincos[k].cos) - MUL(zi, sincos[k].sin);
Z2[k].im = MUL(zi, sincos[k].cos) + MUL(zr, sincos[k].sin);
}
/* reordering */
for (k = 0; k < N8; k++)
{
uint16_t n = k << 1;
X_out[ n] = -Z2[N8 + k].im;
X_out[ 1 + n] = Z2[N8 - 1 - k].re;
X_out[N4 + n] = -Z2[ k].re;
X_out[N4 + 1 + n] = Z2[N4 - 1 - k].im;
X_out[N2 + n] = -Z2[N8 + k].re;
X_out[N2 + 1 + n] = Z2[N8 - 1 - k].im;
X_out[N2 + N4 + n] = Z2[ k].im;
X_out[N2 + N4 + 1 + n] = -Z2[N4 - 1 - k].re;
}
}
#ifdef LTP_DEC
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
uint16_t k;
#ifdef USE_FFTW
fftw_complex *Z1 = mdct->Z1;
fftw_complex *Z2 = mdct->Z2;
#else
real_t *Z1 = mdct->Z1;
#endif
faad_sincos *sincos = mdct->sincos;
uint16_t N = mdct->N;
uint16_t N2 = N >> 1;
uint16_t N4 = N >> 2;
uint16_t N8 = N >> 3;
/* pre-FFT complex multiplication */
for (k = 0; k < N8; k++)
{
uint16_t n = k << 1;
real_t zr = X_in[N - N4 - 1 - n] + X_in[N - N4 + n];
real_t zi = X_in[ N4 + n] - X_in[ N4 - 1 - n];
#ifdef USE_FFTW
Z1[k ].re = -MUL(zr, sincos[k ].cos) - MUL(zi, sincos[k ].sin);
Z1[k ].im = -MUL(zi, sincos[k ].cos) + MUL(zr, sincos[k ].sin);
#else
Z1[k*2 ] = -MUL(zr, sincos[k ].cos) - MUL(zi, sincos[k ].sin);
Z1[k*2+1 ] = -MUL(zi, sincos[k ].cos) + MUL(zr, sincos[k ].sin);
#endif
zr = X_in[ N2 - 1 - n] - X_in[ n];
zi = X_in[ N2 + n] + X_in[N - 1 - n];
#ifdef USE_FFTW
Z1[k + N8].re = -MUL(zr, sincos[k + N8].cos) - MUL(zi, sincos[k + N8].sin);
Z1[k + N8].im = -MUL(zi, sincos[k + N8].cos) + MUL(zr, sincos[k + N8].sin);
#else
Z1[k*2 + N8] = -MUL(zr, sincos[k + N8].cos) - MUL(zi, sincos[k + N8].sin);
Z1[k*2+1 + N8] = -MUL(zi, sincos[k + N8].cos) + MUL(zr, sincos[k + N8].sin);
#endif
}
/* complex FFT */
#ifdef USE_FFTW
fftw_one(mdct->plan_forward, Z1, Z2);
#else
cfftf(mdct->cfft, Z1);
#endif
/* post-FFT complex multiplication */
for (k = 0; k < N4; k++)
{
uint16_t n = k << 1;
#ifdef USE_FFTW
real_t zr = MUL(2.0, MUL(Z2[k].re, sincos[k].cos) + MUL(Z2[k].im, sincos[k].sin));
real_t zi = MUL(2.0, MUL(Z2[k].im, sincos[k].cos) - MUL(Z2[k].re, sincos[k].sin));
#else
real_t zr = MUL(2.0, MUL(Z1[k*2], sincos[k].cos) + MUL(Z1[k*2+1], sincos[k].sin));
real_t zi = MUL(2.0, MUL(Z1[k*2+1], sincos[k].cos) - MUL(Z1[k*2], sincos[k].sin));
#endif
X_out[ n] = -zr;
X_out[N2 - 1 - n] = zi;
X_out[N2 + n] = -zi;
X_out[N - 1 - n] = zr;
}
}
#endif
|