summaryrefslogtreecommitdiff
path: root/src/post/visualizations/fftscope.c
blob: ad898ed1614cbfa1fbf8c1b180ff950a48cf7e40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/*
 * Copyright (C) 2000-2002 the xine project
 * 
 * This file is part of xine, a free video player.
 *
 * xine is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * xine is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA
 *
 * Fast Fourier Transform Visualization Post Plugin For xine
 *   by Mike Melanson (melanson@pcisys.net)
 *
 * FFT code by Steve Haehnichen, originally licensed under GPL v1
 *
 * $Id: fftscope.c,v 1.10 2003/02/17 00:02:52 tmattern Exp $
 *
 */

#include <stdio.h>
#include <math.h>

#include "xine_internal.h"
#include "xineutils.h"
#include "post.h"
#include "bswap.h"

#define FPS 20

#define FFT_WIDTH  512
#define FFT_HEIGHT 256

#define NUMSAMPLES 512
#define MAXCHANNELS  6

typedef struct post_plugin_fftscope_s post_plugin_fftscope_t;

struct _complex
{
  double re;
  double im;
};
typedef struct _complex complex;

struct post_plugin_fftscope_s {
  post_plugin_t post;

  /* private data */
  xine_video_port_t *vo_port;
  xine_stream_t     *stream;

  int data_idx;
  complex wave[MAXCHANNELS][NUMSAMPLES];
  int amp_max[MAXCHANNELS][NUMSAMPLES / 2];
  uint8_t amp_max_y[MAXCHANNELS][NUMSAMPLES / 2];
  uint8_t amp_max_u[MAXCHANNELS][NUMSAMPLES / 2];
  uint8_t amp_max_v[MAXCHANNELS][NUMSAMPLES / 2];
  int     amp_age[MAXCHANNELS][NUMSAMPLES / 2];
  audio_buffer_t buf;   /* dummy buffer just to hold a copy of audio data */

  int bits;
  int mode;
  int channels;
  int sample_rate;
  int sample_counter;
  int samples_per_frame;

  unsigned char u_current;
  unsigned char v_current;
  int u_direction;
  int v_direction;
};

/**************************************************************************
 * fftscope specific decode functions
 *************************************************************************/

#define LOG_BITS 9

# define                SINE(x)         SineTable[(x)]
# define                COSINE(x)       CosineTable[(x)]
# define                WINDOW(x)       WinTable[(x)]
static double            *SineTable, *CosineTable, *WinTable;

#define PERMUTE(x, y)   reverse((x), (y))

/* Number of samples in one "frame" */
#define SAMPLES         (1 << bits)
#define REAL(x)         wave[(x)].re
#define IMAG(x)         wave[(x)].im
#define ALPHA           0.54

/*
 *  Bit reverser for unsigned ints
 *  Reverses 'bits' bits.
 */
inline const unsigned int
reverse (unsigned int val, int bits)
{
  unsigned int retn = 0;

  while (bits--)
    {
      retn <<= 1;
      retn |= (val & 1);
      val >>= 1;
    }
  return (retn);
}

/*
 *  Here is the real work-horse.
 *  It's a generic FFT, so nothing is lost or approximated.
 *  The samples in wave[] should be in order, and they
 *  will be decimated when fft() returns.
 */
static void fft (complex wave[], int bits)
{
  register int  loop, loop1, loop2;
  unsigned      i1;             /* going to right shift this */
  int           i2, i3, i4, y;
  double         a1, a2, b1, b2, z1, z2;

  i1 = SAMPLES / 2;
  i2 = 1;

  /* perform the butterflys */

  for (loop = 0; loop < bits; loop++)
    {
      i3 = 0;
      i4 = i1;

      for (loop1 = 0; loop1 < i2; loop1++)
        {
          y  = PERMUTE(i3 / (int)i1, bits);
          z1 = COSINE(y);
          z2 = -SINE(y);

          for (loop2 = i3; loop2 < i4; loop2++)
            {
              a1 = REAL(loop2);
              a2 = IMAG(loop2);

              b1 = z1 * REAL(loop2+i1) - z2 * IMAG(loop2+i1);
              b2 = z2 * REAL(loop2+i1) + z1 * IMAG(loop2+i1);

              REAL(loop2) = a1 + b1;
              IMAG(loop2) = a2 + b2;

              REAL(loop2+i1) = a1 - b1;
              IMAG(loop2+i1) = a2 - b2;
            }

          i3 += (i1 << 1);
          i4 += (i1 << 1);
        }

      i1 >>= 1;
      i2 <<= 1;
    }
}

/*
 *  Initializer for FFT routines.  Currently only sets up tables.
 *  - Generates scaled lookup tables for sin() and cos()
 *  - Fills a table for the Hamming window function
 */
static void fft_init (int bits)
{
  int i;
  const double   TWOPIoN   = (atan(1.0) * 8.0) / (double)SAMPLES;
  const double   TWOPIoNm1 = (atan(1.0) * 8.0) / (double)(SAMPLES - 1);

  SineTable   = malloc (sizeof(double) * SAMPLES);
  CosineTable = malloc (sizeof(double) * SAMPLES);
  WinTable    = malloc (sizeof(double) * SAMPLES);
  for (i=0; i < SAMPLES; i++)
    {
      SineTable[i]   = sin((double) i * TWOPIoN);
      CosineTable[i] = cos((double) i * TWOPIoN);
      /*
       * Generalized Hamming window function.
       * Set ALPHA to 0.54 for a hanning window. (Good idea)
       */
      WinTable[i] = ALPHA + ((1.0 - ALPHA)
                                * cos (TWOPIoNm1 * (i - SAMPLES/2)));
    }
}

/*
 *  Apply some windowing function to the samples.
 */
static void window (complex wave[], int bits)
{
  int i;

  for (i = 0; i < SAMPLES; i++)
    {
      REAL(i) *= WINDOW(i);
      IMAG(i) *= WINDOW(i);
    }
}

/*
 *  Calculate amplitude of component n in the decimated wave[] array.
 */
static double amp (int n, complex wave[], int bits)
{
  n = PERMUTE (n, bits);
  return (hypot (REAL(n), IMAG(n)));
}

/*
 *  Calculate phase of component n in the decimated wave[] array.
 */
static double phase (int n, complex wave[], int bits)
{
  n = PERMUTE (n, bits);
  if (REAL(n) != 0.0)
    return (atan (IMAG(n) / REAL(n)));
  else
    return (0.0);
}

/*
 *  Scale sampled values.
 *  Do this *before* the fft.
 */
static void scale (complex wave[], int bits)
{
  int i;

  for (i = 0; i < SAMPLES; i++)  {
    wave[i].re /= SAMPLES;
    wave[i].im /= SAMPLES;
  }
}

/*
 *  Fade out a YUV pixel
 */
void fade_out_yuv(uint8_t *y, uint8_t *u, uint8_t *v, float factor) {
#if 0
  float r, g, b;

  /* YUV -> RGB */
  r = 1.164 * (*y - 16) + 1.596 * (*v - 128);
  g = 1.164 * (*y - 16) - 0.813 * (*v - 128) - 0.391 * (*u - 128);
  b = 1.164 * (*y - 16) + 2.018 * (*u - 128);

  /* fade out by a 0.9 factor */
  r *= factor;
  g *= factor;
  b *= factor;

  /* RGB -> YUV */
  *y = (uint8_t)((0.257 * r) + (0.504 * g) + (0.098 * b) + 16);
  *u = (uint8_t)(-(0.148 * r) - (0.291 * g) + (0.439 * b) + 128);
  *v = (uint8_t)((0.439 * r) - (0.368 * g) - (0.071 * b) + 128);
#endif

  *y = (uint8_t)(factor * (*y - 16)) + 16;
  *u = (uint8_t)(factor * (*u - 128)) + 128;
  *v = (uint8_t)(factor * (*v - 128)) + 128;
}


static void draw_fftscope(post_plugin_fftscope_t *this, vo_frame_t *frame) {

  int i, j, c;
  int map_ptr, map_ptr_bkp;
  int amp_int, amp_max, x;
  float amp_float;
  uint32_t yuy2_pair, yuy2_pair_max, yuy2_white;
  int c_delta;

  /* clear the YUY2 map */
  for (i = 0; i < FFT_WIDTH * FFT_HEIGHT / 2; i++)
    ((uint32_t *)frame->base[0])[i] = be2me_32(0x00900080);

  /* get a random delta between 1..6 */
  c_delta = (rand() % 6) + 1;
  /* apply it to the current U value */
  if (this->u_direction) {
    if (this->u_current + c_delta > 255) {
      this->u_current = 255;
      this->u_direction = 0;
    } else
      this->u_current += c_delta;
  } else {
    if (this->u_current - c_delta < 0) {
      this->u_current = 0;
      this->u_direction = 1;
    } else
      this->u_current -= c_delta;
  }

  /* get a random delta between 1..3 */
  c_delta = (rand() % 3) + 1;
  /* apply it to the current V value */
  if (this->v_direction) {
    if (this->v_current + c_delta > 255) {
      this->v_current = 255;
      this->v_direction = 0;
    } else
      this->v_current += c_delta;
  } else {
    if (this->v_current - c_delta < 0) {
      this->v_current = 0;
      this->v_direction = 1;
    } else
      this->v_current -= c_delta;
  }

  yuy2_pair = be2me_32(
    (0x7F << 24) |
    (this->u_current << 16) |
    (0x7F << 8) |
    this->v_current);

  yuy2_white = be2me_32(
    (0xFF << 24) |
    (0x80 << 16) |
    (0xFF << 8) |
    0x80);

  for (c = 0; c < this->channels; c++){
    /* perform FFT for channel data */
    window(this->wave[c], LOG_BITS);
    scale(this->wave[c], LOG_BITS);
    fft(this->wave[c], LOG_BITS);

    /* plot the FFT points for the channel */
    for (i = 0; i < NUMSAMPLES / 2; i++) {

      map_ptr = ((FFT_HEIGHT * (c+1) / this->channels -1 ) * FFT_WIDTH + i * 2) / 2;
      map_ptr_bkp = map_ptr;
      amp_float = amp(i, this->wave[c], LOG_BITS);
      if (amp_float == 0)
        amp_int = 0;
      else
        amp_int = (int)((60/this->channels) * log10(amp_float));
      if (amp_int > 255/this->channels)
        amp_int = 255/this->channels;
      if (amp_int < 0)
        amp_int = 0;

      for (j = 0; j < amp_int; j++, map_ptr -= FFT_WIDTH / 2)
        ((uint32_t *)frame->base[0])[map_ptr] = yuy2_pair;

      /* amp max */
      yuy2_pair_max = be2me_32(
        (this->amp_max_y[c][i] << 24) |
        (this->amp_max_u[c][i] << 16) |
        (this->amp_max_y[c][i] << 8) |
        this->amp_max_v[c][i]);

      /* gravity */
      this->amp_age[c][i]++;
      if (this->amp_age[c][i] < 10) {
        amp_max = this->amp_max[c][i];
      } else {
        x = this->amp_age[c][i] - 10;
        amp_max = this->amp_max[c][i] - x * x;
      }

      /* new peak ? */
      if (amp_int > amp_max) {
        this->amp_max[c][i] = amp_int;
        this->amp_age[c][i] = 0;
        this->amp_max_y[c][i] = 0x7f;
        this->amp_max_u[c][i] = this->u_current;
        this->amp_max_v[c][i] = this->v_current;
        fade_out_yuv(&this->amp_max_y[c][i], &this->amp_max_u[c][i],
          &this->amp_max_v[c][i], 0.5);
        amp_max = amp_int;
      } else {
        fade_out_yuv(&this->amp_max_y[c][i], &this->amp_max_u[c][i],
          &this->amp_max_v[c][i], 0.95);
      }

      /* draw peaks */
      for (j = amp_int; j < (amp_max - 1); j++, map_ptr -= FFT_WIDTH / 2)
        ((uint32_t *)frame->base[0])[map_ptr] = yuy2_pair_max;

      /* top */
      ((uint32_t *)frame->base[0])[map_ptr] = yuy2_white;

      /* persistence of top */
      if (this->amp_age[c][i] >= 10) {
        x = this->amp_age[c][i] - 10;
        x = 0x5f - x;
        if (x < 0x10) x = 0x10;
        ((uint32_t *)frame->base[0])[map_ptr_bkp -
          this->amp_max[c][i] * (FFT_WIDTH / 2)] =
            be2me_32((x << 24) | (0x80 << 16) | (x << 8) | 0x80);
      }
    }
  }

  /* top line */
  for (map_ptr = 0; map_ptr < FFT_WIDTH / 2; map_ptr++)
    ((uint32_t *)frame->base[0])[map_ptr] = yuy2_white;

  /* lines under each channel */
  for (c = 0; c < this->channels; c++){
    for (i = 0, map_ptr = ((FFT_HEIGHT * (c+1) / this->channels -1 ) * FFT_WIDTH) / 2;
       i < FFT_WIDTH / 2; i++, map_ptr++)
    ((uint32_t *)frame->base[0])[map_ptr] = yuy2_white;
  }

}

/**************************************************************************
 * xine video post plugin functions
 *************************************************************************/

typedef struct post_fftscope_out_s post_fftscope_out_t;
struct post_fftscope_out_s {
  xine_post_out_t     out;
  post_plugin_fftscope_t *post;
};

static int fftscope_rewire_audio(xine_post_out_t *output_gen, void *data)
{
  post_fftscope_out_t *output = (post_fftscope_out_t *)output_gen;
  xine_audio_port_t *old_port = *(xine_audio_port_t **)output_gen->data;
  xine_audio_port_t *new_port = (xine_audio_port_t *)data;
  post_plugin_fftscope_t *this = (post_plugin_fftscope_t *)output->post;

  if (!data)
    return 0;
  if (this->stream) {
    /* register our stream at the new output port */
    old_port->close(old_port, this->stream);
    new_port->open(new_port, this->stream, this->bits, this->sample_rate, this->mode);
  }
  /* reconnect ourselves */
  *(xine_audio_port_t **)output_gen->data = new_port;
  return 1;
}

static int fftscope_rewire_video(xine_post_out_t *output_gen, void *data)
{
  post_fftscope_out_t *output = (post_fftscope_out_t *)output_gen;
  xine_video_port_t *old_port = *(xine_video_port_t **)output_gen->data;
  xine_video_port_t *new_port = (xine_video_port_t *)data;
  post_plugin_fftscope_t *this = (post_plugin_fftscope_t *)output->post;

  if (!data)
    return 0;
  if (this->stream) {
    /* register our stream at the new output port */
    old_port->close(old_port, this->stream);
    new_port->open(new_port, this->stream);
  }
  /* reconnect ourselves */
  *(xine_video_port_t **)output_gen->data = new_port;
  return 1;
}

static int mode_channels( int mode ) {
  switch( mode ) {
  case AO_CAP_MODE_MONO:
    return 1;
  case AO_CAP_MODE_STEREO:
    return 2;
  case AO_CAP_MODE_4CHANNEL:
    return 4;
  case AO_CAP_MODE_5CHANNEL:
    return 5;
  case AO_CAP_MODE_5_1CHANNEL:
    return 6;
  }
  return 0;
}

static int fftscope_port_open(xine_audio_port_t *port_gen, xine_stream_t *stream,
		   uint32_t bits, uint32_t rate, int mode) {

  post_audio_port_t  *port = (post_audio_port_t *)port_gen;
  post_plugin_fftscope_t *this = (post_plugin_fftscope_t *)port->post;
  int c, i;

  this->bits = bits;
  this->mode = mode;
  this->channels = mode_channels(mode);
  if( this->channels > MAXCHANNELS )
    this->channels = MAXCHANNELS;
  this->samples_per_frame = rate / FPS;
  this->sample_rate = rate;
  this->stream = stream;
  this->data_idx = 0;
  fft_init(LOG_BITS);

  for (c = 0; c < this->channels; c++) {
    for (i = 0; i < (NUMSAMPLES / 2); i++) {
      this->amp_max[c][i]   = 0;
      this->amp_max_y[c][i] = 0;
      this->amp_max_u[c][i] = 0;
      this->amp_max_v[c][i] = 0;
      this->amp_age[c][i]   = 0;
    }
  }

  return port->original_port->open(port->original_port, stream, bits, rate, mode );
}

static void fftscope_port_close(xine_audio_port_t *port_gen, xine_stream_t *stream ) {

  post_audio_port_t  *port = (post_audio_port_t *)port_gen;
  post_plugin_fftscope_t *this = (post_plugin_fftscope_t *)port->post;

  this->stream = NULL;

  port->original_port->close(port->original_port, stream );
}

static void fftscope_port_put_buffer (xine_audio_port_t *port_gen,
                             audio_buffer_t *buf, xine_stream_t *stream) {

  post_audio_port_t  *port = (post_audio_port_t *)port_gen;
  post_plugin_fftscope_t *this = (post_plugin_fftscope_t *)port->post;
  vo_frame_t         *frame;
  int16_t *data;
  int8_t *data8;
  int samples_used = 0;
  uint64_t vpts = buf->vpts;
  int i, c;

  /* make a copy of buf data for private use */
  if( this->buf.mem_size < buf->mem_size ) {
    this->buf.mem = realloc(this->buf.mem, buf->mem_size);
    this->buf.mem_size = buf->mem_size;
  }
  memcpy(this->buf.mem, buf->mem,
         buf->num_frames*this->channels*((this->bits == 8)?1:2));
  this->buf.num_frames = buf->num_frames;

  /* pass data to original port */
  port->original_port->put_buffer(port->original_port, buf, stream );

  /* we must not use original data anymore, it should have already being moved
   * to the fifo of free audio buffers. just use our private copy instead.
   */
  buf = &this->buf;

  this->sample_counter += buf->num_frames;

  do {

    if( this->bits == 8 ) {
      data8 = (int8_t *)buf->mem;
      data8 += samples_used * this->channels;

      /* scale 8 bit data to 16 bits and convert to signed as well */
      for( i = 0; i < buf->num_frames && this->data_idx < NUMSAMPLES;
           i++, this->data_idx++, data8 += this->channels ) {
        for( c = 0; c < this->channels; c++){
          this->wave[c][this->data_idx].re = (double)(data8[c] << 8) - 0x8000;
          this->wave[c][this->data_idx].im = 0;
        }
      }
    } else {
      data = buf->mem;
      data += samples_used * this->channels;

      for( i = 0; i < buf->num_frames && this->data_idx < NUMSAMPLES;
           i++, this->data_idx++, data += this->channels ) {
        for( c = 0; c < this->channels; c++){
          this->wave[c][this->data_idx].re = (double)data[c];
          this->wave[c][this->data_idx].im = 0;
        }
      }
    }

    if( this->sample_counter >= this->samples_per_frame &&
        this->data_idx == NUMSAMPLES ) {

      this->data_idx = 0;
      samples_used += this->samples_per_frame;

      frame = this->vo_port->get_frame (this->vo_port, FFT_WIDTH, FFT_HEIGHT,
                                        XINE_VO_ASPECT_SQUARE, XINE_IMGFMT_YUY2,
                                        VO_BOTH_FIELDS);
      frame->pts = vpts;
      vpts = 0;
      frame->duration = 90000 * this->samples_per_frame / this->sample_rate;
      this->sample_counter -= this->samples_per_frame;

      draw_fftscope(this, frame);

      frame->draw(frame, stream);
      frame->free(frame);
    }
  } while( this->sample_counter >= this->samples_per_frame );
}

static void fftscope_dispose(post_plugin_t *this_gen)
{
  post_plugin_fftscope_t *this = (post_plugin_fftscope_t *)this_gen;
  xine_post_out_t *output = (xine_post_out_t *)xine_list_first_content(this_gen->output);
  xine_video_port_t *port = *(xine_video_port_t **)output->data;

  if (this->stream)
    port->close(port, this->stream);

  free(this->post.xine_post.audio_input);
  free(this->post.xine_post.video_input);
  free(xine_list_first_content(this->post.input));
  free(xine_list_first_content(this->post.output));
  xine_list_free(this->post.input);
  xine_list_free(this->post.output);
  if(this->buf.mem)
    free(this->buf.mem);
  free(this);
}

/* plugin class functions */
static post_plugin_t *fftscope_open_plugin(post_class_t *class_gen, int inputs,
					 xine_audio_port_t **audio_target,
					 xine_video_port_t **video_target)
{
  post_plugin_fftscope_t *this   = (post_plugin_fftscope_t *)malloc(sizeof(post_plugin_fftscope_t));
  xine_post_in_t     *input  = (xine_post_in_t *)malloc(sizeof(xine_post_in_t));
  post_fftscope_out_t    *output = (post_fftscope_out_t *)malloc(sizeof(post_fftscope_out_t));
  post_fftscope_out_t    *outputv = (post_fftscope_out_t *)malloc(sizeof(post_fftscope_out_t));
  post_audio_port_t  *port;

  if (!this || !input || !output || !outputv || !video_target || !video_target[0] ||
      !audio_target || !audio_target[0] ) {
    free(this);
    free(input);
    free(output);
    free(outputv);
    return NULL;
  }

  this->sample_counter = 0;
  this->stream  = NULL;
  this->vo_port = video_target[0];
  this->buf.mem = NULL;
  this->buf.mem_size = 0;

  port = post_intercept_audio_port(&this->post, audio_target[0]);
  port->port.open = fftscope_port_open;
  port->port.close = fftscope_port_close;
  port->port.put_buffer = fftscope_port_put_buffer;

  input->name = "audio in";
  input->type = XINE_POST_DATA_AUDIO;
  input->data = (xine_audio_port_t *)&port->port;

  output->out.name   = "audio out";
  output->out.type   = XINE_POST_DATA_AUDIO;
  output->out.data   = (xine_audio_port_t **)&port->original_port;
  output->out.rewire = fftscope_rewire_audio;
  output->post       = this;

  outputv->out.name   = "generated video";
  outputv->out.type   = XINE_POST_DATA_VIDEO;
  outputv->out.data   = (xine_video_port_t **)&this->vo_port;
  outputv->out.rewire = fftscope_rewire_video;
  outputv->post       = this;

  this->post.xine_post.audio_input    = (xine_audio_port_t **)malloc(sizeof(xine_audio_port_t *) * 2);
  this->post.xine_post.audio_input[0] = &port->port;
  this->post.xine_post.audio_input[1] = NULL;
  this->post.xine_post.video_input    = (xine_video_port_t **)malloc(sizeof(xine_video_port_t *) * 1);
  this->post.xine_post.video_input[0] = NULL;

  this->post.input  = xine_list_new();
  this->post.output = xine_list_new();

  xine_list_append_content(this->post.input, input);
  xine_list_append_content(this->post.output, output);
  xine_list_append_content(this->post.output, outputv);

  this->post.dispose = fftscope_dispose;

  return &this->post;
}

static char *fftscope_get_identifier(post_class_t *class_gen)
{
  return "FFT Scope";
}

static char *fftscope_get_description(post_class_t *class_gen)
{
  return "FFT Scope";
}

static void fftscope_class_dispose(post_class_t *class_gen)
{
  free(class_gen);
}

/* plugin class initialization function */
void *fftscope_init_plugin(xine_t *xine, void *data)
{
  post_class_t *class = (post_class_t *)malloc(sizeof(post_class_t));
  
  if (!class)
    return NULL;
  
  class->open_plugin     = fftscope_open_plugin;
  class->get_identifier  = fftscope_get_identifier;
  class->get_description = fftscope_get_description;
  class->dispose         = fftscope_class_dispose;
  
  return class;
}