1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
/*
* Copyright (C) 2000-2002 the xine project
*
* This file is part of xine, a free video player.
*
* xine is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* xine is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
* Color Conversion Utility Functions
*
* Overview: xine's video output modules only accept YUV images from
* video decoder modules. A video decoder can either send a planar (YV12)
* image or a packed (YUY2) image to a video output module. However, many
* older video codecs are RGB-based. Either each pixel is an index
* to an RGB value in a palette table, or each pixel is encoded with
* red, green, and blue values. In the latter case, typically either
* 15, 16, 24, or 32 bits are used to represent a single pixel.
*
* If you want to use these facilities in your decoder, include the
* xineutils.h header file. Then declare a yuv_planes_t structure. This
* structure represents 3 non-subsampled YUV planes. "Non-subsampled"
* means that there is a Y, U, and V sample for each pixel in the RGB
* image, whereas YUV formats are usually subsampled so that the U and
* V samples correspond to more than 1 pixel in the output image. When
* you need to convert RGB values to Y, U, and V, values, use the
* COMPUTE_Y(r, g, b), COMPUTE_U(r, g, b), COMPUTE_V(r, g, b) macros found
* in xineutils.h
*
* The yuv_planes_t structure has 2 other fields: row_width and row_count
* which are equivalent to the frame width and height, respectively.
*
* When an image has been fully decoded into the yuv_planes_t structure,
* call yuv444_to_yuy2() with the structure and the final (pre-allocated)
* YUY2 buffer. xine will have already chosen the best conversion
* function to use based on the CPU type. The YUY2 buffer will then be
* ready to pass to the video output module.
*
* If your decoder is rendering an image based on an RGB palette, a good
* strategy is to maintain a YUV palette rather than an RGB palette and
* render the image directly in YUV.
*
* Some utility macros that you may find useful in your decoder are
* UNPACK_RGB15, UNPACK_RGB16, UNPACK_BGR15, and UNPACK_BGR16. All are
* located in xineutils.h. All of them take a packed pixel, either in
* RGB or BGR format depending on the macro, and unpack them into the
* component red, green, and blue bytes. If a CPU has special instructions
* to facilitate these operations (such as the PPC AltiVec pixel-unpacking
* instructions), these macros will automatically map to those special
* instructions.
*
* $Id: color.c,v 1.6 2002/08/28 03:32:48 tmmm Exp $
*/
#include "xine_internal.h"
#include "xineutils.h"
/*
* In search of the perfect colorspace conversion formulae...
* These are the conversion equations that xine currently uses:
*
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* U = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128
* V = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128
*
* Feel free to experiment with different coefficients by altering the
* next 9 defines.
*/
#if 1
#define Y_R (SCALEFACTOR * 0.29900)
#define Y_G (SCALEFACTOR * 0.58700)
#define Y_B (SCALEFACTOR * 0.11400)
#define U_R (SCALEFACTOR * -0.16874)
#define U_G (SCALEFACTOR * -0.33126)
#define U_B (SCALEFACTOR * 0.50000)
#define V_R (SCALEFACTOR * 0.50000)
#define V_G (SCALEFACTOR * -0.41869)
#define V_B (SCALEFACTOR * -0.08131)
#else
/*
* Here is another promising set of coefficients. If you use these, you
* must also add 16 to the Y calculation in the COMPUTE_Y macro found
* in xineutils.h.
*/
#define Y_R (SCALEFACTOR * 0.257)
#define Y_G (SCALEFACTOR * 0.504)
#define Y_B (SCALEFACTOR * 0.098)
#define U_R (SCALEFACTOR * -0.148)
#define U_G (SCALEFACTOR * -0.291)
#define U_B (SCALEFACTOR * 0.439)
#define V_R (SCALEFACTOR * 0.439)
#define V_G (SCALEFACTOR * -0.368)
#define V_B (SCALEFACTOR * -0.071)
#endif
/*
* Precalculate all of the YUV tables since it requires fewer than
* 10 kilobytes to store them.
*/
int y_r_table[256];
int y_g_table[256];
int y_b_table[256];
int u_r_table[256];
int u_g_table[256];
int u_b_table[256];
int v_r_table[256];
int v_g_table[256];
int v_b_table[256];
void (*yuv444_to_yuy2) (yuv_planes_t *yuv_planes, unsigned char *yuy2_map, int pitch);
/*
* init_yuv_planes
*
* This function initializes a yuv_planes_t structure based on the width
* and height passed to it. The width must be divisible by 2.
*/
void init_yuv_planes(yuv_planes_t *yuv_planes, int width, int height) {
int plane_size;
yuv_planes->row_width = width;
yuv_planes->row_count = height;
/* add 6 extra bytes to the plane size to account for residual filtering
* on the C planes */
plane_size = yuv_planes->row_width * yuv_planes->row_count + 6;
yuv_planes->y = xine_xmalloc(plane_size);
yuv_planes->u = xine_xmalloc(plane_size);
yuv_planes->v = xine_xmalloc(plane_size);
}
/*
* free_yuv_planes
*
* This frees the memory used by the YUV planes.
*/
void free_yuv_planes(yuv_planes_t *yuv_planes) {
free(yuv_planes->y);
free(yuv_planes->u);
free(yuv_planes->v);
}
/*
* yuv444_to_yuy2_c
*
* This is the simple, portable C version of the yuv444_to_yuy2() function.
* It is not especially accurate in its method. But it is fast.
*
* yuv_planes contains the 3 non-subsampled planes that represent Y, U,
* and V samples for every pixel in the image. For each pair of pixels,
* use both Y samples but use the first pixel's U value and the second
* pixel's V value.
*
* Y plane: Y0 Y1 Y2 Y3 ...
* U plane: U0 U1 U2 U3 ...
* V plane: V0 V1 V2 V3 ...
*
* YUY2 map: Y0 U0 Y1 V1 Y2 U2 Y3 V3
*/
void yuv444_to_yuy2_c(yuv_planes_t *yuv_planes, unsigned char *yuy2_map,
int pitch) {
int row_ptr, pixel_ptr;
int yuy2_index;
/* copy the Y samples */
yuy2_index = 0;
for (row_ptr = 0; row_ptr < yuv_planes->row_width * yuv_planes->row_count;
row_ptr += yuv_planes->row_width) {
for (pixel_ptr = 0; pixel_ptr < yuv_planes->row_width;
pixel_ptr++, yuy2_index += 2)
yuy2_map[yuy2_index] = yuv_planes->y[row_ptr + pixel_ptr];
yuy2_index += (pitch - 2*yuv_planes->row_width);
}
/* copy the C samples */
yuy2_index = 1;
for (row_ptr = 0; row_ptr < yuv_planes->row_width * yuv_planes->row_count;
row_ptr += yuv_planes->row_width) {
for (pixel_ptr = 0; pixel_ptr < yuv_planes->row_width;) {
yuy2_map[yuy2_index] = yuv_planes->u[row_ptr + pixel_ptr];
pixel_ptr++;
yuy2_index += 2;
yuy2_map[yuy2_index] = yuv_planes->v[row_ptr + pixel_ptr];
pixel_ptr++;
yuy2_index += 2;
}
yuy2_index += (pitch - 2*yuv_planes->row_width);
}
}
/*
* yuv444_to_yuy2_mmx
*
* This is the proper, filtering version of the yuv444_to_yuy2() function
* optimized with basic Intel MMX instructions.
*
* yuv_planes contains the 3 non-subsampled planes that represent Y, U,
* and V samples for every pixel in the image. The goal is to convert the
* 3 planes to a single packed YUY2 byte stream. Dealing with the Y
* samples is easy because every Y sample is used in the final image.
* This can still be sped up using MMX instructions. Initialize mm0 to 0.
* Then load blocks of 8 Y samples into mm1:
*
* in memory: Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
* in mm1: Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
*
* Use the punpck*bw instructions to interleave the Y samples with zeros.
* For example, executing punpcklbw_r2r(mm0, mm1) will result in:
*
* mm1: 00 Y3 00 Y2 00 Y1 00 Y0
*
* which will be written back to memory (in the YUY2 map) as:
*
* in memory: Y0 00 Y1 00 Y2 00 Y3 00
*
* Do the same with the top 4 samples and soon all of the Y samples are
* split apart and ready to have the U and V values interleaved.
*
* The C planes (U and V) must be filtered. The filter looks like this:
*
* (1 * C1 + 3 * C2 + 3 * C3 + 1 * C4) / 8
*
* This filter slides across each row of each color plane. In the end, all
* of the samples are filtered and the converter only uses every other
* one. Since half of the filtered samples will not be used, their
* calculations can safely be skipped.
*
* This implementation of the converter uses the MMX pmaddwd instruction
* which performs 4 16x16 multiplications and 2 additions in parallel.
*
* First, initialize mm0 to 0 and mm7 to the filter coefficients:
* mm0 = 0
* mm7 = 0001 0003 0003 0001
*
* For each C plane, init the YUY2 map pointer to either 1 (for the U
* plane) or 3 (for the V plane). For each set of 8 C samples, compute
* 3 final C samples: 1 for [C0..C3], 1 for [C2..C5], and 1 for [C4..C7].
* Load 8 samples:
* mm1 = C7 C6 .. C1 C0 (opposite order than in memory)
*
* Interleave zeros with the first 4 C samples:
* mm2 = 00 C3 00 C2 00 C1 00 C0
*
* Use pmaddwd to multiply and add:
* mm2 = [C0 * 1 + C1 * 3] [C2 * 3 + C3 * 1]
*
* Copy mm2 to mm3, shift the high 32 bits in mm3 down, do the final
* accumulation, and then divide by 8 (shift right by 3):
* mm3 = mm2
* mm3 >>= 32
* mm2 += mm3
* mm2 >>= 3
*
* At this point, the lower 8 bits of mm2 contain a filtered C sample.
* Move it out to the YUY2 map and advance the map pointer by 4. Toss out
* 2 of the samples in mm1 (C0 and C1) and loop twice more, once for
* [C2..C5] and once for [C4..C7]. After computing 3 filtered samples,
* increment the plane pointer by 6 and repeat the whole process.
*
* There is a special case when the filter hits the end of the line since
* it is always necessary to rely on phantom samples beyond the end of the
* line in order to compute the final 1-3 C samples of a line. This function
* uses zeros in those phantom positions in order to compute the final
* samples. However, the function might read up to 6 samples from the next
* line which might not exist if the filter is already operation on the
* last line of the plane. This is why the planes are allocated to be 6
* bytes larger than width * height.
*
*/
void yuv444_to_yuy2_mmx(yuv_planes_t *yuv_planes, unsigned char *yuy2_map,
int pitch) {
#ifdef ARCH_X86
int h, i, j, k;
unsigned char *source_plane;
unsigned char *dest_plane;
unsigned char vector[8];
unsigned char filter[] = {
0x01, 0x00,
0x03, 0x00,
0x03, 0x00,
0x01, 0x00
};
unsigned char advance2_andmask[] = {
0xFF, 0xFF,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00
};
unsigned char advance4_andmask[] = {
0xFF, 0xFF,
0xFF, 0xFF,
0x00, 0x00,
0x00, 0x00
};
unsigned char advance6_andmask[] = {
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0x00, 0x00
};
int block_loops = yuv_planes->row_width / 6;
int filter_loops;
int advance_count;
int row_inc = (pitch - 2 * yuv_planes->row_width);
/* set up some MMX registers:
* mm0 = 0, mm7 = color filter,
* mm4..6 = advance 2,4,6 and masks */
pxor_r2r(mm0, mm0);
movq_m2r(*filter, mm7);
movq_m2r(*advance2_andmask, mm4);
movq_m2r(*advance4_andmask, mm5);
movq_m2r(*advance6_andmask, mm6);
/* copy the Y samples */
source_plane = yuv_planes->y;
dest_plane = yuy2_map;
for (i = 0; i < yuv_planes->row_count; i++) {
/* iterate through blocks of 8 samples, disregarding extra 2 samples */
for (j = 0; j < yuv_planes->row_width / 8; j++) {
movq_m2r(*source_plane, mm1); /* load 8 Y samples */
source_plane += 8;
movq_r2r(mm1, mm2); /* mm2 = mm1 */
punpcklbw_r2r(mm0, mm1); /* interleave lower 4 samples with zeros */
movq_r2m(mm1, *dest_plane);
dest_plane += 8;
punpckhbw_r2r(mm0, mm2); /* interleave upper 4 samples with zeros */
movq_r2m(mm2, *dest_plane);
dest_plane += 8;
}
dest_plane += row_inc;
}
/* figure out the C samples */
for (h = 0; h < 2; h++) {
/* select the color plane for this iteration */
if (h == 0) {
source_plane = yuv_planes->u;
dest_plane = yuy2_map + 1;
} else {
source_plane = yuv_planes->v;
dest_plane = yuy2_map + 3;
}
for (i = 0; i < yuv_planes->row_count; i++) {
filter_loops = 3;
/* iterate through blocks of 6 samples */
for (j = 0; j <= block_loops; j++) {
/* special case for end-of-line residual */
if (j != block_loops) {
movq_m2r(*source_plane, mm1); /* load 8 C samples */
source_plane += 6;
} else {
advance_count = yuv_planes->row_width % 6;
if (!advance_count)
advance_count = 6;
filter_loops = advance_count / 2;
movq_m2r(*source_plane, mm1); /* load 8 C samples */
source_plane += advance_count;
/* zero out the rest of the samples */
/*
if (advance_count == 2)
pand_r2r(mm4, mm1);
else if (advance_count == 4)
pand_r2r(mm5, mm1);
else if (advance_count == 6)
pand_r2r(mm6, mm1);
*/
}
for (k = 0; k < filter_loops; k++) {
movq_r2r(mm1, mm2); /* make a copy */
punpcklbw_r2r(mm0, mm2); /* interleave lower 4 samples with zeros */
pmaddwd_r2r(mm7, mm2); /* apply the filter */
movq_r2r(mm2, mm3); /* copy result to mm3 */
psrlq_i2r(32, mm3); /* move the upper sum down */
paddd_r2r(mm3, mm2); /* mm2 += mm3 */
psrlq_i2r(3, mm2); /* divide by 8 */
movq_r2m(mm2, *vector);
dest_plane[0] = vector[0];
dest_plane += 4;
psrlq_i2r(16, mm1); /* toss out 2 C samples and loop again */
}
}
}
}
/* be a good MMX citizen and empty MMX state */
emms();
#endif
}
/*
* init_yuv_conversion
*
* This function precalculates all of the tables used for converting RGB
* values to YUV values. This function also decides which conversion
* functions to use.
*/
void init_yuv_conversion(void) {
int i;
for (i = 0; i < 256; i++) {
y_r_table[i] = Y_R * i;
y_g_table[i] = Y_G * i;
y_b_table[i] = Y_B * i;
u_r_table[i] = U_R * i;
u_g_table[i] = U_G * i;
u_b_table[i] = U_B * i;
v_r_table[i] = V_R * i;
v_g_table[i] = V_G * i;
v_b_table[i] = V_B * i;
}
if (xine_mm_accel() & MM_ACCEL_X86_MMX)
yuv444_to_yuy2 = yuv444_to_yuy2_mmx;
else
yuv444_to_yuy2 = yuv444_to_yuy2_c;
}
|