summaryrefslogtreecommitdiff
path: root/src/xine-utils/color.c
blob: 6815bdef1743c06f260a98a4b0b2a03773cb8b7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
/*
 * Copyright (C) 2000-2002 the xine project
 *
 * This file is part of xine, a free video player.
 *
 * xine is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * xine is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA
 *
 * Color Conversion Utility Functions
 * 
 * Overview: xine's video output modules only accept YUV images from
 * video decoder modules. A video decoder can either send a planar (YV12)
 * image or a packed (YUY2) image to a video output module. However, many
 * older video codecs are RGB-based. Either each pixel is an index
 * to an RGB value in a palette table, or each pixel is encoded with
 * red, green, and blue values. In the latter case, typically either
 * 15, 16, 24, or 32 bits are used to represent a single pixel.
 * The facilities in this file are designed to ease the pain of converting
 * RGB -> YUV.
 *
 * If you want to use these facilities in your decoder, include the
 * xineutils.h header file. Then declare a yuv_planes_t structure. This
 * structure represents 3 non-subsampled YUV planes. "Non-subsampled"
 * means that there is a Y, U, and V sample for each pixel in the RGB
 * image, whereas YUV formats are usually subsampled so that the U and
 * V samples correspond to more than 1 pixel in the output image. When
 * you need to convert RGB values to Y, U, and V, values, use the
 * COMPUTE_Y(r, g, b), COMPUTE_U(r, g, b), COMPUTE_V(r, g, b) macros found
 * in xineutils.h
 *
 * The yuv_planes_t structure has 2 other fields: row_width and row_count
 * which are equivalent to the frame width and height, respectively.
 *
 * When an image has been fully decoded into the yuv_planes_t structure,
 * call yuv444_to_yuy2() with the structure and the final (pre-allocated)
 * YUY2 buffer. xine will have already chosen the best conversion
 * function to use based on the CPU type. The YUY2 buffer will then be
 * ready to pass to the video output module.
 *
 * If your decoder is rendering an image based on an RGB palette, a good
 * strategy is to maintain a YUV palette rather than an RGB palette and
 * render the image directly in YUV.
 *
 * Some utility macros that you may find useful in your decoder are
 * UNPACK_RGB15, UNPACK_RGB16, UNPACK_BGR15, and UNPACK_BGR16. All are
 * located in xineutils.h. All of them take a packed pixel, either in
 * RGB or BGR format depending on the macro, and unpack them into the
 * component red, green, and blue bytes. If a CPU has special instructions
 * to facilitate these operations (such as the PPC AltiVec pixel-unpacking
 * instructions), these macros will automatically map to those special
 * instructions.
 *
 * $Id: color.c,v 1.20 2003/07/12 04:34:39 miguelfreitas Exp $
 */

#include "xine_internal.h"
#include "xineutils.h"

/*
 * In search of the perfect colorspace conversion formulae...
 * These are the conversion equations that xine currently uses:
 *
 *      Y  =  0.29900 * R + 0.58700 * G + 0.11400 * B
 *      U  = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128
 *      V  =  0.50000 * R - 0.41869 * G - 0.08131 * B + 128
 *
 * Feel free to experiment with different coefficients by altering the
 * next 9 defines.
 */

#if 1

#define Y_R (SCALEFACTOR *  0.29900)
#define Y_G (SCALEFACTOR *  0.58700)
#define Y_B (SCALEFACTOR *  0.11400)

#define U_R (SCALEFACTOR * -0.16874)
#define U_G (SCALEFACTOR * -0.33126)
#define U_B (SCALEFACTOR *  0.50000)

#define V_R (SCALEFACTOR *  0.50000)
#define V_G (SCALEFACTOR * -0.41869)
#define V_B (SCALEFACTOR * -0.08131)

#else

/*
 * Here is another promising set of coefficients. If you use these, you
 * must also add 16 to the Y calculation in the COMPUTE_Y macro found
 * in xineutils.h.
 */

#define Y_R (SCALEFACTOR *  0.257)
#define Y_G (SCALEFACTOR *  0.504)
#define Y_B (SCALEFACTOR *  0.098)

#define U_R (SCALEFACTOR * -0.148)
#define U_G (SCALEFACTOR * -0.291)
#define U_B (SCALEFACTOR *  0.439)

#define V_R (SCALEFACTOR *  0.439)
#define V_G (SCALEFACTOR * -0.368)
#define V_B (SCALEFACTOR * -0.071)

#endif

/*
 * Precalculate all of the YUV tables since it requires fewer than
 * 10 kilobytes to store them.
 */
int y_r_table[256];
int y_g_table[256];
int y_b_table[256];

int u_r_table[256];
int u_g_table[256];
int u_b_table[256];

int v_r_table[256];
int v_g_table[256];
int v_b_table[256];

void (*yuv444_to_yuy2) (yuv_planes_t *yuv_planes, unsigned char *yuy2_map, int pitch);
void (*yuv9_to_yv12)
  (unsigned char *y_src, int y_src_pitch, unsigned char *y_dest, int y_dest_pitch,
   unsigned char *u_src, int u_src_pitch, unsigned char *u_dest, int u_dest_pitch,
   unsigned char *v_src, int v_src_pitch, unsigned char *v_dest, int v_dest_pitch,
   int width, int height);
void (*yuv411_to_yv12)
  (unsigned char *y_src, int y_src_pitch, unsigned char *y_dest, int y_dest_pitch,
   unsigned char *u_src, int u_src_pitch, unsigned char *u_dest, int u_dest_pitch,
   unsigned char *v_src, int v_src_pitch, unsigned char *v_dest, int v_dest_pitch,
   int width, int height);
void (*yv12_to_yuy2)
  (unsigned char *y_src, int y_src_pitch, 
   unsigned char *u_src, int u_src_pitch, 
   unsigned char *v_src, int v_src_pitch, 
   unsigned char *yuy2_map, int yuy2_pitch,
   int width, int height, int progressive);
void (*yuy2_to_yv12)
  (unsigned char *yuy2_map, int yuy2_pitch,
   unsigned char *y_dst, int y_dst_pitch, 
   unsigned char *u_dst, int u_dst_pitch, 
   unsigned char *v_dst, int v_dst_pitch, 
   int width, int height);

/*
 * init_yuv_planes
 *
 * This function initializes a yuv_planes_t structure based on the width
 * and height passed to it. The width must be divisible by 2.
 */
void init_yuv_planes(yuv_planes_t *yuv_planes, int width, int height) {

  int plane_size;

  yuv_planes->row_width = width;
  yuv_planes->row_count = height;
  plane_size = yuv_planes->row_width * yuv_planes->row_count;

  yuv_planes->y = xine_xmalloc(plane_size);
  yuv_planes->u = xine_xmalloc(plane_size);
  yuv_planes->v = xine_xmalloc(plane_size);
}

/*
 * free_yuv_planes
 *
 * This frees the memory used by the YUV planes.
 */
void free_yuv_planes(yuv_planes_t *yuv_planes) {
  free(yuv_planes->y);
  free(yuv_planes->u);
  free(yuv_planes->v);
}

/* 
 * yuv444_to_yuy2_c
 *
 * This is the simple, portable C version of the yuv444_to_yuy2() function.
 * It is not especially accurate in its method. But it is fast.
 *
 * yuv_planes contains the 3 non-subsampled planes that represent Y, U,
 * and V samples for every pixel in the image. For each pair of pixels,
 * use both Y samples but use the first pixel's U value and the second
 * pixel's V value.
 *
 *    Y plane: Y0 Y1 Y2 Y3 ...
 *    U plane: U0 U1 U2 U3 ...
 *    V plane: V0 V1 V2 V3 ...
 *
 *   YUY2 map: Y0 U0 Y1 V1  Y2 U2 Y3 V3
 */
void yuv444_to_yuy2_c(yuv_planes_t *yuv_planes, unsigned char *yuy2_map, 
  int pitch) {

  int row_ptr, pixel_ptr;
  int yuy2_index;

  /* copy the Y samples */
  yuy2_index = 0;
  for (row_ptr = 0; row_ptr < yuv_planes->row_width * yuv_planes->row_count;
    row_ptr += yuv_planes->row_width) {
    for (pixel_ptr = 0; pixel_ptr <  yuv_planes->row_width;
      pixel_ptr++, yuy2_index += 2)
      yuy2_map[yuy2_index] = yuv_planes->y[row_ptr + pixel_ptr];

    yuy2_index += (pitch - 2*yuv_planes->row_width);
  }

  /* copy the C samples */
  yuy2_index = 1;
  for (row_ptr = 0; row_ptr < yuv_planes->row_width * yuv_planes->row_count;
    row_ptr += yuv_planes->row_width) {

    for (pixel_ptr = 0; pixel_ptr <  yuv_planes->row_width;) {
      yuy2_map[yuy2_index] = yuv_planes->u[row_ptr + pixel_ptr];
      pixel_ptr++;
      yuy2_index += 2;
      yuy2_map[yuy2_index] = yuv_planes->v[row_ptr + pixel_ptr];
      pixel_ptr++;
      yuy2_index += 2;
    }

    yuy2_index += (pitch - 2*yuv_planes->row_width);
  }
}

/* 
 * yuv444_to_yuy2_mmx
 *
 * This is the proper, filtering version of the yuv444_to_yuy2() function
 * optimized with basic Intel MMX instructions.
 * 
 * yuv_planes contains the 3 non-subsampled planes that represent Y, U,
 * and V samples for every pixel in the image. The goal is to convert the
 * 3 planes to a single packed YUY2 byte stream. Dealing with the Y
 * samples is easy because every Y sample is used in the final image.
 * This can still be sped up using MMX instructions. Initialize mm0 to 0.
 * Then load blocks of 8 Y samples into mm1:
 *
 *    in memory: Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
 *    in mm1:    Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
 *
 * Use the punpck*bw instructions to interleave the Y samples with zeros.
 * For example, executing punpcklbw_r2r(mm0, mm1) will result in:
 *
 *          mm1: 00 Y3 00 Y2 00 Y1 00 Y0
 *
 * which will be written back to memory (in the YUY2 map) as:
 *
 *    in memory: Y0 00 Y1 00 Y2 00 Y3 00
 *
 * Do the same with the top 4 samples and soon all of the Y samples are
 * split apart and ready to have the U and V values interleaved.
 *
 * The C planes (U and V) must be filtered. The filter looks like this:
 *
 *   (1 * C1 + 3 * C2 + 3 * C3 + 1 * C4) / 8
 *
 * This filter slides across each row of each color plane. In the end, all
 * of the samples are filtered and the converter only uses every other
 * one. Since half of the filtered samples will not be used, their
 * calculations can safely be skipped.
 *
 * This implementation of the converter uses the MMX pmaddwd instruction
 * which performs 4 16x16 multiplications and 2 additions in parallel.
 *
 * First, initialize mm0 to 0 and mm7 to the filter coefficients:
 *    mm0 = 0
 *    mm7 = 0001 0003 0003 0001
 *
 * For each C plane, init the YUY2 map pointer to either 1 (for the U
 * plane) or 3 (for the V plane). For each set of 8 C samples, compute
 * 3 final C samples: 1 for [C0..C3], 1 for [C2..C5], and 1 for [C4..C7].
 * Load 8 samples:
 *    mm1 = C7 C6 .. C1 C0 (opposite order than in memory)
 *
 * Interleave zeros with the first 4 C samples:
 *    mm2 = 00 C3 00 C2 00 C1 00 C0
 *
 * Use pmaddwd to multiply and add:
 *    mm2 = [C0 * 1 + C1 * 3] [C2 * 3 + C3 * 1]
 *
 * Copy mm2 to mm3, shift the high 32 bits in mm3 down, do the final
 * accumulation, and then divide by 8 (shift right by 3):
 *    mm3 = mm2
 *    mm3 >>= 32
 *    mm2 += mm3
 *    mm2 >>= 3
 *
 * At this point, the lower 8 bits of mm2 contain a filtered C sample.
 * Move it out to the YUY2 map and advance the map pointer by 4. Toss out
 * 2 of the samples in mm1 (C0 and C1) and loop twice more, once for
 * [C2..C5] and once for [C4..C7]. After computing 3 filtered samples,
 * increment the plane pointer by 6 and repeat the whole process.
 *
 * There is a special case when the filter hits the end of the line since
 * it is always necessary to rely on phantom samples beyond the end of the
 * line in order to compute the final 1-3 C samples of a line. This function
 * rewinds the C sample stream by a few bytes and reuses a few samples in
 * order to compute the final samples. This is not strictly correct; a
 * better approach would be to mirror the final samples before computing
 * the filter. But this reuse method is fast and apparently accurate
 * enough.
 *
 */
void yuv444_to_yuy2_mmx(yuv_planes_t *yuv_planes, unsigned char *yuy2_map,
  int pitch) {
#ifdef ARCH_X86
  int h, i, j, k;
  int width_div_8 = yuv_planes->row_width / 8;
  int width_mod_8 = yuv_planes->row_width % 8;
  unsigned char *source_plane;
  unsigned char *dest_plane;
  unsigned char filter[] = {
    0x01, 0x00,
    0x03, 0x00,
    0x03, 0x00,
    0x01, 0x00
  };
  unsigned char shifter[] = {0, 0, 0, 0, 0, 0, 0, 0};
  unsigned char vector[8];
  int block_loops = yuv_planes->row_width / 6;
  int filter_loops;
  int residual_filter_loops;
  int row_inc = (pitch - 2 * yuv_planes->row_width);

  residual_filter_loops = (yuv_planes->row_width % 6) / 2;
  shifter[0] = residual_filter_loops * 8;
  /* if the width is divisible by 6, apply 3 residual filters and perform
   * one less primary loop */
  if (!residual_filter_loops) {
    residual_filter_loops = 3;
    block_loops--;
  }

  /* set up some MMX registers: 
   * mm0 = 0, mm7 = color filter */
  pxor_r2r(mm0, mm0);
  movq_m2r(*filter, mm7);

  /* copy the Y samples */
  source_plane = yuv_planes->y;
  dest_plane = yuy2_map;
  for (i = 0; i < yuv_planes->row_count; i++) {
    /* iterate through blocks of 8 Y samples */
    for (j = 0; j < width_div_8; j++) {

      movq_m2r(*source_plane, mm1);  /* load 8 Y samples */
      source_plane += 8;

      movq_r2r(mm1, mm2);  /* mm2 = mm1 */

      punpcklbw_r2r(mm0, mm1); /* interleave lower 4 samples with zeros */
      movq_r2m(mm1, *dest_plane);
      dest_plane += 8;

      punpckhbw_r2r(mm0, mm2); /* interleave upper 4 samples with zeros */
      movq_r2m(mm2, *dest_plane);
      dest_plane += 8;
    }

    /* iterate through residual samples in row if row is not divisible by 8 */
    for (j = 0; j < width_mod_8; j++) {

      *dest_plane = *source_plane;
      dest_plane += 2;
      source_plane++;
    }

    dest_plane += row_inc;
  }

  /* figure out the C samples */
  for (h = 0; h < 2; h++) {

    /* select the color plane for this iteration */
    if (h == 0) {
      source_plane = yuv_planes->u;
      dest_plane = yuy2_map + 1;
    } else {
      source_plane = yuv_planes->v;
      dest_plane = yuy2_map + 3;
    }

    for (i = 0; i < yuv_planes->row_count; i++) {

      filter_loops = 3;

      /* iterate through blocks of 6 samples */
      for (j = 0; j <= block_loops; j++) {

        if (j == block_loops) {

          /* special case for end-of-line residual */
          filter_loops = residual_filter_loops;
          source_plane -= (8 - residual_filter_loops * 2);
          movq_m2r(*source_plane, mm1); /* load 8 C samples */
          source_plane += 8;
          psrlq_m2r(*shifter, mm1);  /* toss out samples before starting */

        } else {

          /* normal case */
          movq_m2r(*source_plane, mm1); /* load 8 C samples */
          source_plane += 6;
        }

        for (k = 0; k < filter_loops; k++) {
          movq_r2r(mm1, mm2);      /* make a copy */

          punpcklbw_r2r(mm0, mm2); /* interleave lower 4 samples with zeros */
          pmaddwd_r2r(mm7, mm2);   /* apply the filter */
          movq_r2r(mm2, mm3);      /* copy result to mm3 */
          psrlq_i2r(32, mm3);      /* move the upper sum down */
          paddd_r2r(mm3, mm2);     /* mm2 += mm3 */
          psrlq_i2r(3, mm2);       /* divide by 8 */

#if 0
          /* load the destination address into ebx */
          __asm__ __volatile__ ("mov %0, %%ebx"
                              : /* nothing */
                              : "X" (dest_plane)
                              : "ebx" /* clobber list */);

          /* move the lower 32 bits of mm2 into eax */
          __asm__ __volatile__ ("movd %%mm2, %%eax"
                                : /* nothing */
                                : /* nothing */
                                : "eax" /* clobber list */ );

          /* move al (the final filtered sample) to its spot it memory */
          __asm__ __volatile__ ("mov %%al, (%%ebx)"
                                : /* nothing */
                                : /* nothing */ );

#else
          movq_r2m(mm2, *vector);
          dest_plane[0] = vector[0];
#endif

          dest_plane += 4;

          psrlq_i2r(16, mm1);      /* toss out 2 C samples and loop again */
        }
      }
    }
  }

  /* be a good MMX citizen and empty MMX state */
  emms();
#endif
}

static void hscale_chroma_line (unsigned char *dst, unsigned char *src,
  int width) {

  unsigned int n1, n2;
  int       x;

  n1       = *src;
  *(dst++) = n1;

  for (x=0; x < (width - 1); x++) {
    n2       = *(++src);
    *(dst++) = (3*n1 + n2 + 2) >> 2;
    *(dst++) = (n1 + 3*n2 + 2) >> 2;
    n1       = n2;
  }

  *dst = n1;
}

static void vscale_chroma_line (unsigned char *dst, int pitch,
  unsigned char *src1, unsigned char *src2, int width) {

  unsigned int t1, t2;
  unsigned int n1, n2, n3, n4;
  unsigned int *dst1, *dst2;
  int       x;

  dst1 = (unsigned int *) dst;
  dst2 = (unsigned int *) (dst + pitch);

  /* process blocks of 4 pixels */
  for (x=0; x < (width / 4); x++) {
    n1  = *(((unsigned int *) src1)++);
    n2  = *(((unsigned int *) src2)++);
    n3  = (n1 & 0xFF00FF00) >> 8;
    n4  = (n2 & 0xFF00FF00) >> 8;
    n1 &= 0x00FF00FF;
    n2 &= 0x00FF00FF;

    t1 = (2*n1 + 2*n2 + 0x20002);
    t2 = (n1 - n2);
    n1 = (t1 + t2);
    n2 = (t1 - t2);
    t1 = (2*n3 + 2*n4 + 0x20002);
    t2 = (n3 - n4);
    n3 = (t1 + t2);
    n4 = (t1 - t2);

    *(dst1++) = ((n1 >> 2) & 0x00FF00FF) | ((n3 << 6) & 0xFF00FF00);
    *(dst2++) = ((n2 >> 2) & 0x00FF00FF) | ((n4 << 6) & 0xFF00FF00);
  }

  /* process remaining pixels */
  for (x=(width & ~0x3); x < width; x++) {
    n1 = src1[x];
    n2 = src2[x];

    dst[x]       = (3*n1 + n2 + 2) >> 2;
    dst[x+pitch] = (n1 + 3*n2 + 2) >> 2;
  }
}

static void upsample_c_plane_c(unsigned char *src, int src_width, 
  int src_height, unsigned char *dest, 
  unsigned int src_pitch, unsigned int dest_pitch) {

  unsigned char *cr1;
  unsigned char *cr2;
  unsigned char *tmp;
  int y;

  cr1 = &dest[dest_pitch * (src_height * 2 - 2)];
  cr2 = &dest[dest_pitch * (src_height * 2 - 3)];

  /* horizontally upscale first line */
  hscale_chroma_line (cr1, src, src_width);
  src += src_pitch;

  /* store first line */
  memcpy (dest, cr1, src_width * 2);
  dest += dest_pitch;

  for (y = 0; y < (src_height - 1); y++) {

    hscale_chroma_line (cr2, src, src_width);
    src += src_pitch;

    /* interpolate and store two lines */
    vscale_chroma_line (dest, dest_pitch, cr1, cr2, src_width * 2);
    dest += 2 * dest_pitch;

    /* swap buffers */
    tmp = cr2;
    cr2 = cr1;
    cr1 = tmp;
  }

  /* horizontally upscale and store last line */
  src -= src_pitch;
  hscale_chroma_line (dest, src, src_width);
}

/*
 * yuv9_to_yv12_c
 *
 */
void yuv9_to_yv12_c
  (unsigned char *y_src, int y_src_pitch, unsigned char *y_dest, int y_dest_pitch,
   unsigned char *u_src, int u_src_pitch, unsigned char *u_dest, int u_dest_pitch,
   unsigned char *v_src, int v_src_pitch, unsigned char *v_dest, int v_dest_pitch,
   int width, int height) {

  int y;

  /* Y plane */
  for (y=0; y < height; y++) {
    xine_fast_memcpy (y_dest, y_src, width);
    y_src += y_src_pitch;
    y_dest += y_dest_pitch;
  }

  /* U plane */
  upsample_c_plane_c(u_src, width / 4, height / 4, u_dest, 
    u_src_pitch, u_dest_pitch);

  /* V plane */
  upsample_c_plane_c(v_src, width / 4, height / 4, v_dest, 
    v_src_pitch, v_dest_pitch);

}

/*
 * yuv411_to_yv12_c
 *
 */
void yuv411_to_yv12_c
  (unsigned char *y_src, int y_src_pitch, unsigned char *y_dest, int y_dest_pitch,
   unsigned char *u_src, int u_src_pitch, unsigned char *u_dest, int u_dest_pitch,
   unsigned char *v_src, int v_src_pitch, unsigned char *v_dest, int v_dest_pitch,
   int width, int height) {

  int y;
  int c_src_row, c_src_pixel;
  int c_dest_row, c_dest_pixel;
  unsigned char c_sample;

  /* Y plane */
  for (y=0; y < height; y++) {
    xine_fast_memcpy (y_dest, y_src, width);
    y_src += y_src_pitch;
    y_dest += y_dest_pitch;
  }

  /* naive approach: downsample vertically, upsample horizontally */

  /* U plane */
  for (c_src_row = 0, c_dest_row = 0;
       c_src_row < u_src_pitch * height;
       c_src_row += u_src_pitch * 2, c_dest_row += u_dest_pitch) {

    for (c_src_pixel = c_src_row, c_dest_pixel = c_dest_row;
         c_dest_pixel < c_dest_row + u_dest_pitch;
         c_src_pixel++) {

      /* downsample by averaging the samples from 2 rows */
      c_sample = 
        (u_src[c_src_pixel] + u_src[c_src_pixel + u_src_pitch] + 1) / 2;
      /* upsample by outputting the sample twice on the YV12 row */
      u_dest[c_dest_pixel++] = c_sample;
      u_dest[c_dest_pixel++] = c_sample;

    }
  }

  /* V plane */
  for (c_src_row = 0, c_dest_row = 0;
       c_src_row < v_src_pitch * height;
       c_src_row += v_src_pitch * 2, c_dest_row += v_dest_pitch) {

    for (c_src_pixel = c_src_row, c_dest_pixel = c_dest_row;
         c_dest_pixel < c_dest_row + v_dest_pitch;
         c_src_pixel++) {

      /* downsample by averaging the samples from 2 rows */
      c_sample = 
        (v_src[c_src_pixel] + v_src[c_src_pixel + v_src_pitch] + 1 ) / 2;
      /* upsample by outputting the sample twice on the YV12 row */
      v_dest[c_dest_pixel++] = c_sample;
      v_dest[c_dest_pixel++] = c_sample;

    }
  }

}

#define C_YUV420_YUYV( )                                          \
    *p_line1++ = *p_y1++; *p_line2++ = *p_y2++;                   \
    *p_line1++ = *p_u;    *p_line2++ = (*p_u++ + *p_u2++)>>1;     \
    *p_line1++ = *p_y1++; *p_line2++ = *p_y2++;                   \
    *p_line1++ = *p_v;    *p_line2++ = (*p_v++ + *p_v2++)>>1;

/*****************************************************************************
 * I420_YUY2: planar YUV 4:2:0 to packed YUYV 4:2:2
 * original conversion routine from Videolan project
 * changed to support interlaced frames and use simple mean interpolation [MF]
 *****************************************************************************/
void yv12_to_yuy2_c
  (unsigned char *y_src, int y_src_pitch, 
   unsigned char *u_src, int u_src_pitch, 
   unsigned char *v_src, int v_src_pitch, 
   unsigned char *yuy2_map, int yuy2_pitch,
   int width, int height, int progressive) {

    uint8_t *p_line1, *p_line2 = yuy2_map;
    uint8_t *p_y1, *p_y2 = y_src;
    uint8_t *p_u = u_src;
    uint8_t *p_v = v_src;
    uint8_t *p_u2 = u_src + u_src_pitch;
    uint8_t *p_v2 = v_src + v_src_pitch;

    int i_x, i_y;

    const int i_source_margin = y_src_pitch - width;
    const int i_source_u_margin = u_src_pitch - width/2;
    const int i_source_v_margin = v_src_pitch - width/2;
    const int i_dest_margin = yuy2_pitch - width*2;


    if( progressive ) {

      for( i_y = height / 2 ; i_y-- ; )
      {
          p_line1 = p_line2;
          p_line2 += yuy2_pitch;
  
          p_y1 = p_y2;
          p_y2 += y_src_pitch;
  
          for( i_x = width / 8 ; i_x-- ; )
          {
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
          }
  
          p_y2 += i_source_margin;
          p_u += i_source_u_margin;
          p_v += i_source_v_margin;
          if( i_y > 1 ) {
            p_u2 += i_source_u_margin;
            p_v2 += i_source_v_margin;
          } else {
            p_u2 = p_u;
            p_v2 = p_v;
          }
          p_line2 += i_dest_margin;
      }

    } else {

      p_u2 = u_src + 2*u_src_pitch;
      p_v2 = v_src + 2*v_src_pitch;
      for( i_y = height / 4 ; i_y-- ; )
      {
          p_line1 = p_line2;
          p_line2 += 2 * yuy2_pitch;
  
          p_y1 = p_y2;
          p_y2 += 2 * y_src_pitch;
  
          for( i_x = width / 8 ; i_x-- ; )
          {
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
          }
  
          p_y2 += i_source_margin + y_src_pitch;
          p_u += i_source_u_margin + u_src_pitch;
          p_v += i_source_v_margin + v_src_pitch;
          if( i_y > 1 ) {
            p_u2 += i_source_u_margin + u_src_pitch;
            p_v2 += i_source_v_margin + v_src_pitch;
          } else {
            p_u2 = p_u;
            p_v2 = p_v;
          }
          p_line2 += i_dest_margin + yuy2_pitch;
      }
  
      p_line2 = yuy2_map + yuy2_pitch;
      p_y2 = y_src + y_src_pitch;
      p_u = u_src + u_src_pitch;
      p_v = v_src + v_src_pitch;
      p_u2 = u_src + 3*u_src_pitch;
      p_v2 = v_src + 3*v_src_pitch;
  
      for( i_y = height / 4 ; i_y-- ; )
      {
          p_line1 = p_line2;
          p_line2 += 2 * yuy2_pitch;
  
          p_y1 = p_y2;
          p_y2 += 2 * y_src_pitch;
  
          for( i_x = width / 8 ; i_x-- ; )
          {
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
              C_YUV420_YUYV( );
          }
  
          p_y2 += i_source_margin + y_src_pitch;
          p_u += i_source_u_margin + u_src_pitch;
          p_v += i_source_v_margin + v_src_pitch;
          if( i_y > 1 ) {
            p_u2 += i_source_u_margin + u_src_pitch;
            p_v2 += i_source_v_margin + v_src_pitch;
          } else {
            p_u2 = p_u;
            p_v2 = p_v;
          }
          p_line2 += i_dest_margin + yuy2_pitch;
      }

    }
}


#ifdef ARCH_X86

#define MMXEXT_YUV420_YUYV( )                                                      \
do {                                                                               \
   __asm__ __volatile__(".align 8 \n\t"                                            \
    "movq       (%0), %%mm0 \n\t"  /* Load 8 Y          y7 y6 y5 y4 y3 y2 y1 y0 */ \
    "movd       (%1), %%mm1 \n\t"  /* Load 4 Cb         00 00 00 00 u3 u2 u1 u0 */ \
    "movd       (%2), %%mm2 \n\t"  /* Load 4 Cr         00 00 00 00 v3 v2 v1 v0 */ \
    "punpcklbw %%mm2, %%mm1 \n\t"  /*                   v3 u3 v2 u2 v1 u1 v0 u0 */ \
    "movq      %%mm0, %%mm2 \n\t"  /*                   y7 y6 y5 y4 y3 y2 y1 y0 */ \
    "punpcklbw %%mm1, %%mm2 \n\t"  /*                   v1 y3 u1 y2 v0 y1 u0 y0 */ \
    :                                                                              \
    : "r" (p_y1), "r" (p_u), "r" (p_v) );                                          \
   __asm__ __volatile__(                                                           \
    "movd       (%0), %%mm3 \n\t"  /* Load 4 Cb         00 00 00 00 u3 u2 u1 u0 */ \
    "movd       (%1), %%mm4 \n\t"  /* Load 4 Cr         00 00 00 00 v3 v2 v1 v0 */ \
    "punpcklbw %%mm4, %%mm3 \n\t"  /*                   v3 u3 v2 u2 v1 u1 v0 u0 */ \
    "pavgb     %%mm1, %%mm3 \n\t"  /* (mean)            v3 u3 v2 u2 v1 u1 v0 u0 */ \
    :                                                                              \
    : "r" (p_u2), "r" (p_v2) );                                                    \
   __asm__ __volatile__(                                                           \
    "movntq    %%mm2, (%0)  \n\t"  /* Store low YUYV                            */ \
    "punpckhbw %%mm1, %%mm0 \n\t"  /*                   v3 y7 u3 y6 v2 y5 u2 y4 */ \
    "movntq    %%mm0, 8(%0) \n\t"  /* Store high YUYV                           */ \
    "movq       (%2), %%mm0 \n\t"  /* Load 8 Y          Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 */ \
    "movq      %%mm0, %%mm2 \n\t"  /*                   Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 */ \
    "punpcklbw %%mm3, %%mm2 \n\t"  /*                   v1 Y3 u1 Y2 v0 Y1 u0 Y0 */ \
    "movntq    %%mm2, (%1)  \n\t"  /* Store low YUYV                            */ \
    "punpckhbw %%mm3, %%mm0 \n\t"  /*                   v3 Y7 u3 Y6 v2 Y5 u2 Y4 */ \
    "movntq    %%mm0, 8(%1) \n\t"  /* Store high YUYV                           */ \
    :                                                                              \
    : "r" (p_line1),  "r" (p_line2),  "r" (p_y2) );                                \
  p_line1 += 16; p_line2 += 16; p_y1 += 8; p_y2 += 8; p_u += 4; p_v += 4;          \
  p_u2 += 4; p_v2 += 4;                                                            \
} while(0)

#endif

void yv12_to_yuy2_mmxext
  (unsigned char *y_src, int y_src_pitch, 
   unsigned char *u_src, int u_src_pitch, 
   unsigned char *v_src, int v_src_pitch, 
   unsigned char *yuy2_map, int yuy2_pitch,
   int width, int height, int progressive ) {
#ifdef ARCH_X86
    uint8_t *p_line1, *p_line2 = yuy2_map;
    uint8_t *p_y1, *p_y2 = y_src;
    uint8_t *p_u = u_src;
    uint8_t *p_v = v_src;
    uint8_t *p_u2 = u_src + u_src_pitch;
    uint8_t *p_v2 = v_src + v_src_pitch;

    int i_x, i_y;

    const int i_source_margin = y_src_pitch - width;
    const int i_source_u_margin = u_src_pitch - width/2;
    const int i_source_v_margin = v_src_pitch - width/2;
    const int i_dest_margin = yuy2_pitch - width*2;

    if( progressive ) {

      for( i_y = height / 2; i_y-- ; )
      {
          p_line1 = p_line2;
          p_line2 += yuy2_pitch;
  
          p_y1 = p_y2;
          p_y2 += y_src_pitch;
  
          for( i_x = width / 8 ; i_x-- ; )
          {
              MMXEXT_YUV420_YUYV( );
          }
  
          p_y2 += i_source_margin;
          p_u += i_source_u_margin;
          p_v += i_source_v_margin;
          if( i_y > 1 ) {
            p_u2 += i_source_u_margin;
            p_v2 += i_source_v_margin;
          } else {
            p_u2 = p_u;
            p_v2 = p_v;
          }
          p_line2 += i_dest_margin;
      }

    } else {

      p_u2 = u_src + 2*u_src_pitch;
      p_v2 = v_src + 2*v_src_pitch;
      for( i_y = height / 4 ; i_y-- ; )
      {
          p_line1 = p_line2;
          p_line2 += 2 * yuy2_pitch;
  
          p_y1 = p_y2;
          p_y2 += 2 * y_src_pitch;
  
          for( i_x = width / 8 ; i_x-- ; )
          {
              MMXEXT_YUV420_YUYV( );
          }
  
          p_y2 += i_source_margin + y_src_pitch;
          p_u += i_source_u_margin + u_src_pitch;
          p_v += i_source_v_margin + v_src_pitch;
          if( i_y > 1 ) {
            p_u2 += i_source_u_margin + u_src_pitch;
            p_v2 += i_source_v_margin + v_src_pitch;
          } else {
            p_u2 = p_u;
            p_v2 = p_v;
          }
          p_line2 += i_dest_margin + yuy2_pitch;
      }
  
      p_line2 = yuy2_map + yuy2_pitch;
      p_y2 = y_src + y_src_pitch;
      p_u = u_src + u_src_pitch;
      p_v = v_src + v_src_pitch;
      p_u2 = u_src + 3*u_src_pitch;
      p_v2 = v_src + 3*v_src_pitch;
  
      for( i_y = height / 4 ; i_y-- ; )
      {
          p_line1 = p_line2;
          p_line2 += 2 * yuy2_pitch;
  
          p_y1 = p_y2;
          p_y2 += 2 * y_src_pitch;
  
          for( i_x = width / 8 ; i_x-- ; )
          {
              MMXEXT_YUV420_YUYV( );
          }
  
          p_y2 += i_source_margin + y_src_pitch;
          p_u += i_source_u_margin + u_src_pitch;
          p_v += i_source_v_margin + v_src_pitch;
          if( i_y > 1 ) {
            p_u2 += i_source_u_margin + u_src_pitch;
            p_v2 += i_source_v_margin + v_src_pitch;
          } else {
            p_u2 = p_u;
            p_v2 = p_v;
          }
          p_line2 += i_dest_margin + yuy2_pitch;
      }

    }

    sfence();
    emms();

#endif
}

#define C_YUYV_YUV420( )                                          \
    *p_y1++ = *p_line1++; *p_y2++ = *p_line2++;                   \
    *p_u++ = (*p_line1++ + *p_line2++)>>1;                        \
    *p_y1++ = *p_line1++; *p_y2++ = *p_line2++;                   \
    *p_v++ = (*p_line1++ + *p_line2++)>>1;

void yuy2_to_yv12_c
  (unsigned char *yuy2_map, int yuy2_pitch,
   unsigned char *y_dst, int y_dst_pitch, 
   unsigned char *u_dst, int u_dst_pitch, 
   unsigned char *v_dst, int v_dst_pitch, 
   int width, int height) {

    uint8_t *p_line1, *p_line2 = yuy2_map;
    uint8_t *p_y1, *p_y2 = y_dst;
    uint8_t *p_u = u_dst;
    uint8_t *p_v = v_dst;

    int i_x, i_y;

    const int i_dest_margin = y_dst_pitch - width;
    const int i_dest_u_margin = u_dst_pitch - width/2;
    const int i_dest_v_margin = v_dst_pitch - width/2;
    const int i_source_margin = yuy2_pitch - width*2;


    for( i_y = height / 2 ; i_y-- ; )
    {
        p_line1 = p_line2;
        p_line2 += yuy2_pitch;
  
        p_y1 = p_y2;
        p_y2 += y_dst_pitch;
  
        for( i_x = width / 8 ; i_x-- ; )
        {
            C_YUYV_YUV420( );
            C_YUYV_YUV420( );
            C_YUYV_YUV420( );
            C_YUYV_YUV420( );
        }
  
        p_y2 += i_dest_margin;
        p_u += i_dest_u_margin;
        p_v += i_dest_v_margin;
        p_line2 += i_source_margin;
    }
}


#ifdef ARCH_X86

/* yuy2->yv12 with subsampling (some ideas from mplayer's yuy2toyv12) */
#define MMXEXT_YUYV_YUV420( )                                                      \
do {                                                                               \
   __asm__ __volatile__(".align 8 \n\t"                                            \
    "movq       (%0), %%mm0 \n\t"  /* Load              v1 y3 u1 y2 v0 y1 u0 y0 */ \
    "movq      8(%0), %%mm1 \n\t"  /* Load              v3 y7 u3 y6 v2 y5 u2 y4 */ \
    "movq      %%mm0, %%mm2 \n\t"  /*                   v1 y3 u1 y2 v0 y1 u0 y0 */ \
    "movq      %%mm1, %%mm3 \n\t"  /*                   v3 y7 u3 y6 v2 y5 u2 y4 */ \
    "psrlw     $8, %%mm0    \n\t"  /*                   00 v1 00 u1 00 v0 00 u0 */ \
    "psrlw     $8, %%mm1    \n\t"  /*                   00 v3 00 u3 00 v2 00 u2 */ \
    "pand      %%mm7, %%mm2 \n\t"  /*                   00 y3 00 y2 00 y1 00 y0 */ \
    "pand      %%mm7, %%mm3 \n\t"  /*                   00 y7 00 y6 00 y5 00 y4 */ \
    "packuswb  %%mm1, %%mm0 \n\t"  /*                   v3 u3 v2 u2 v1 u1 v0 u0 */ \
    "packuswb  %%mm3, %%mm2 \n\t"  /*                   y7 y6 y5 y4 y3 y2 y1 y0 */ \
    "movntq    %%mm2, (%1)  \n\t"  /* Store YYYYYYYY line1                      */ \
    :                                                                              \
    : "r" (p_line1), "r" (p_y1) );                                                 \
   __asm__ __volatile__(".align 8 \n\t"                                            \
    "movq       (%0), %%mm1 \n\t"  /* Load              v1 y3 u1 y2 v0 y1 u0 y0 */ \
    "movq      8(%0), %%mm2 \n\t"  /* Load              v3 y7 u3 y6 v2 y5 u2 y4 */ \
    "movq      %%mm1, %%mm3 \n\t"  /*                   v1 y3 u1 y2 v0 y1 u0 y0 */ \
    "movq      %%mm2, %%mm4 \n\t"  /*                   v3 y7 u3 y6 v2 y5 u2 y4 */ \
    "psrlw     $8, %%mm1    \n\t"  /*                   00 v1 00 u1 00 v0 00 u0 */ \
    "psrlw     $8, %%mm2    \n\t"  /*                   00 v3 00 u3 00 v2 00 u2 */ \
    "pand      %%mm7, %%mm3 \n\t"  /*                   00 y3 00 y2 00 y1 00 y0 */ \
    "pand      %%mm7, %%mm4 \n\t"  /*                   00 y7 00 y6 00 y5 00 y4 */ \
    "packuswb  %%mm2, %%mm1 \n\t"  /*                   v3 u3 v2 u2 v1 u1 v0 u0 */ \
    "packuswb  %%mm4, %%mm3 \n\t"  /*                   y7 y6 y5 y4 y3 y2 y1 y0 */ \
    "movntq    %%mm3, (%1)  \n\t"  /* Store YYYYYYYY line2                      */ \
    :                                                                              \
    : "r" (p_line2), "r" (p_y2) );                                                 \
   __asm__ __volatile__(                                                           \
    "pavgb     %%mm1, %%mm0 \n\t"  /* (mean)            v3 u3 v2 u2 v1 u1 v0 u0 */ \
    "movq      %%mm0, %%mm1 \n\t"  /*                   v3 u3 v2 u2 v1 u1 v0 u0 */ \
    "psrlw     $8, %%mm0    \n\t"  /*                   00 v3 00 v2 00 v1 00 v0 */ \
    "packuswb  %%mm0, %%mm0 \n\t"  /*                               v3 v2 v1 v0 */ \
    "movd      %%mm0, (%0)  \n\t"  /* Store VVVV                                */ \
    "pand      %%mm7, %%mm1 \n\t"  /*                   00 u3 00 u2 00 u1 00 u0 */ \
    "packuswb  %%mm1, %%mm1 \n\t"  /*                               u3 u2 u1 u0 */ \
    "movd      %%mm1, (%1)  \n\t"  /* Store UUUU                                */ \
    :                                                                              \
    : "r" (p_v), "r" (p_u) );                                                      \
  p_line1 += 16; p_line2 += 16; p_y1 += 8; p_y2 += 8; p_u += 4; p_v += 4;          \
} while(0)

#endif

void yuy2_to_yv12_mmxext
  (unsigned char *yuy2_map, int yuy2_pitch,
   unsigned char *y_dst, int y_dst_pitch, 
   unsigned char *u_dst, int u_dst_pitch, 
   unsigned char *v_dst, int v_dst_pitch, 
   int width, int height) {
#ifdef ARCH_X86
    uint8_t *p_line1, *p_line2 = yuy2_map;
    uint8_t *p_y1, *p_y2 = y_dst;
    uint8_t *p_u = u_dst;
    uint8_t *p_v = v_dst;

    int i_x, i_y;

    const int i_dest_margin = y_dst_pitch - width;
    const int i_dest_u_margin = u_dst_pitch - width/2;
    const int i_dest_v_margin = v_dst_pitch - width/2;
    const int i_source_margin = yuy2_pitch - width*2;

    __asm__ __volatile__(
     "pcmpeqw %mm7, %mm7           \n\t"
     "psrlw $8, %mm7               \n\t" /* 00 ff 00 ff 00 ff 00 ff */
    );

    for( i_y = height / 2 ; i_y-- ; )
    {
        p_line1 = p_line2;
        p_line2 += yuy2_pitch;
  
        p_y1 = p_y2;
        p_y2 += y_dst_pitch;
  
        for( i_x = width / 8 ; i_x-- ; )
        {
            MMXEXT_YUYV_YUV420( );
        }
  
        p_y2 += i_dest_margin;
        p_u += i_dest_u_margin;
        p_v += i_dest_v_margin;
        p_line2 += i_source_margin;
    }

    sfence();
    emms();
#endif
}


/*
 * init_yuv_conversion
 *
 * This function precalculates all of the tables used for converting RGB
 * values to YUV values. This function also decides which conversion
 * functions to use.
 */
void init_yuv_conversion(void) {

  int i;

  /* initialize the RGB -> YUV tables */
  for (i = 0; i < 256; i++) {

    y_r_table[i] = Y_R * i;
    y_g_table[i] = Y_G * i;
    y_b_table[i] = Y_B * i;

    u_r_table[i] = U_R * i;
    u_g_table[i] = U_G * i;
    u_b_table[i] = U_B * i;

    v_r_table[i] = V_R * i;
    v_g_table[i] = V_G * i;
    v_b_table[i] = V_B * i;
  }

  /* determine best YUV444 -> YUY2 converter to use */
  if (xine_mm_accel() & MM_ACCEL_X86_MMX)
    yuv444_to_yuy2 = yuv444_to_yuy2_mmx;
  else
    yuv444_to_yuy2 = yuv444_to_yuy2_c;

  /* determine best YV12 -> YUY2 converter to use */
  if (xine_mm_accel() & MM_ACCEL_X86_MMXEXT)
    yv12_to_yuy2 = yv12_to_yuy2_mmxext;
  else
    yv12_to_yuy2 = yv12_to_yuy2_c;

  /* determine best YV12 -> YUY2 converter to use */
  if (xine_mm_accel() & MM_ACCEL_X86_MMXEXT)
    yuy2_to_yv12 = yuy2_to_yv12_mmxext;
  else
    yuy2_to_yv12 = yuy2_to_yv12_c;


  /* determine best YUV9 -> YV12 converter to use (only the portable C
   * version is available so far) */
  yuv9_to_yv12 = yuv9_to_yv12_c;

  /* determine best YUV411 -> YV12 converter to use (only the portable C
   * version is available so far) */
  yuv411_to_yv12 = yuv411_to_yv12_c;

}